The rapid increase in the number of older people with Alzheimer's disease (AD) and other forms of dementia represents one of the major challenges to the health and social care systems. Early detection of AD makes it possible for patients to access appropriate services and to benefit from new treatments and therapies, as and when they become available. The onset of AD starts many years before the clinical symptoms become clear. A biomarker that can measure the brain changes in this period would be useful for early diagnosis of AD. Potentially, the electroencephalogram (EEG) can play a valuable role in early detection of AD. Damage in the brain due to AD leads to changes in the information processing activity of the brain and the EEG which can be quantified as a biomarker. The objective of the study reported in this paper is to develop robust EEG-based biomarkers for detecting AD in its early stages. We present a new approach to quantify the slowing of the EEG, one of the most consistent features at different stages of dementia, based on changes in the EEG amplitudes (ΔEEG A ). The new approach has sensitivity and specificity values of 100% and 88.88%, respectively, and outperformed the Lempel-Ziv Complexity (LZC) approach in discriminating between AD and normal subjects.
Background: The present study involved the following parts, the first part is evaluation of the levels of glycated hemoglobin(HbA1c), creatinine, uric acid(UA) and albumin in patients with diabetic nephropathy comparison with the group of healthy as a control group. The second part is the measurement and evaluation of oxidative stress represented in the malondihydehyde(MDA) as a biomarker of oxidative stress as well as the identification of vitamins C and E as an antioxidant in patients with diabetic nephropathy(DN) compared with the healthy group. Objective: The objective of this study is to estimate oxidative stress by calculate malondialdehyd as biomarker and evaluate some vitamins such as vit C and vit E as antioxidants in diabetic neph
... Show Morelarization modulation plays an important role in polarization encoding in quantum key distribution. By using polarization modulation, quantum key distribution systems become more compact and more vulnerable as one laser source is used instead of using multiple laser sources that may cause side-channel attacks. Metasurfaces with their exceptional optical properties have led to the development of versatile ultrathin optical devices. They are made up of planar arrays of resonant or nearly resonant subwavelength pieces and provide complete control over reflected and transmitted electromagnetic waves opening several possibilities for the development of innovative optical components. In this work, the Si nanowire metasurface
... Show MoreCrop diseases are usually caused by inoculum of pathogens which might exist on alternate hosts or weeds as endophytes. These endophytes, cum pathogens, usually confer some beneficial attributes to these weeds or alternate hosts from protection against herbivores, disease resistance, stress tolerance to secondary metabolites production. This study was therefore carried out to isolate potential crop pathogens which exist as endophytes on weed species in the University of Ilorin plantations. Green asymptomatic leaves were collected from 10 weed species across the plantations, and processed for their endophytic fungi isolation. Isolates were purified into pure cultures and used for molecular identification using the internal transcribed spac
... Show MorePolarization modulation plays an important role in polarization encoding in quantum key distribution. By using polarization modulation, quantum key distribution systems become more compact and more vulnerable as one laser source is used instead of using multiple laser sources that may cause side-channel attacks. Metasurfaces with their exceptional optical properties have led to the development of versatile ultrathin optical devices. They are made up of planar arrays of resonant or nearly resonant subwavelength pieces and provide complete control over reflected and transmitted electromagnetic waves opening several possibilities for the development of innovative optical components. In this work, the Si nanowire metasurface grating polarize
... Show MoreMost recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA)
Until recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15
... Show MoreModern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the
... Show More