Fractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal image compression, specifically for the block indexing methods based on the moment descriptor. Block indexing method depends on classifying the domain and range blocks using moments to generate an invariant descriptor that reduces the long encoding time. A comparison is performed between the blocked indexing technology and other fractal image techniques to determine the importance of block indexing in saving encoding time and achieving better compression ratio while maintaining image quality on Lena image.
order to increase the level of security, as this system encrypts the secret image before sending it through the internet to the recipient (by the Blowfish method). As The Blowfish method is known for its efficient security; nevertheless, the encrypting time is long. In this research we try to apply the smoothing filter on the secret image which decreases its size and consequently the encrypting and decrypting time are decreased. The secret image is hidden after encrypting it into another image called the cover image, by the use of one of these two methods" Two-LSB" or" Hiding most bits in blue pixels". Eventually we compare the results of the two methods to determine which one is better to be used according to the PSNR measurs
Doppler broadening of the 511 keV positron annihilation ??? ? was used to estimate the concentration of defects ?? different deformation levels of pure alnminum samples. These samples were compressed at room temperature to 15, 22, 28, 38,40, and 75 % thickness reduction. The two-state ^sitron-trapping model has been employed. 'I he s and w lineshape parameters were measured using high-resolution gamma spectrometer with high pure germanium detector of 2.1 keV resolution at 1.33 MeV of 60Co. The change of defects concentration (Co) with the deformation level (e) is found to obey an empirical formula of the form Cd - A £ B where A and ? are positive constants that depend mainly on the deformation procedure and the temperature at which the def
... Show MoreAbstract
The Phenomenon of Extremism of Values (Maximum or Rare Value) an important phenomenon is the use of two techniques of sampling techniques to deal with this Extremism: the technique of the peak sample and the maximum annual sampling technique (AM) (Extreme values, Gumbel) for sample (AM) and (general Pareto, exponential) distribution of the POT sample. The cross-entropy algorithm was applied in two of its methods to the first estimate using the statistical order and the second using the statistical order and likelihood ratio. The third method is proposed by the researcher. The MSE comparison coefficient of the estimated parameters and the probability density function for each of the distributions were
... Show MoreOxidation of sulfur compounds in fuel followed by an adsorption process were studied using two modes of operation, batch mode and continuous mode (fixed bed). In batch experiment oxidation process of kerosene with sulfur content 2360 ppm was achieved to study the effect of amount of hydrogen peroxide(2.5, 4, 6 and 10) ml at different temperature(40, 60 and 70)°C. Also the effect of amount acetic acid was studied at the optimal conditions of the oxidation step(4ml H2O2 and 60 °C).Besides, the role of acetic acid different temperatures(40, 60, 70) °C and 4ml H2O2, effect of reaction time(5, 30, 60, 120, 300) minutes at temperatures(40,60) °C, 4ml H2O2 and 1 mlHAC)&
... Show MorePorosity plays an essential role in petroleum engineering. It controls fluid storage in aquifers, connectivity of the pore structure control fluid flow through reservoir formations. To quantify the relationships between porosity, storage, transport and rock properties, however, the pore structure must be measured and quantitatively described. Porosity estimation of digital image utilizing image processing essential for the reservoir rock analysis since the sample 2D porosity briefly described. The regular procedure utilizes the binarization process, which uses the pixel value threshold to convert the color and grayscale images to binary images. The idea is to accommodate the blue regions entirely with pores and transform it to white in r
... Show MoreSimulation of direct current (DC) discharge plasma using
COMSOL Multiphysics software were used to study the uniformity
of deposition on anode from DC discharge sputtering using ring and
disc cathodes, then applied it experimentally to make comparison
between film thickness distribution with simulation results. Both
simulation and experimental results shows that the deposition using
copper ring cathode is more uniformity than disc cathode
In this work preparation of antireflection coating with single layer of MgO using pulsed laser deposition (PLD) method which deposit on glass substrate with different thicknesses (90 and 100) nm annealed at temperature 500 K was done.
The optical and structural properties (X-ray diffraction) have been determined. The optical reflectance was computed with the aid of MATLAB over the visible and near infrared region. Results shows that the best result obtained for optical performance of AR'Cs at 700 shots with thickness 90 nm nanostructure single layer AR'Cs and low reflection at wavelength 550 nm.