The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of non-linear partial differential equations with small amount of computations does not require to calculate restrictive assumptions or transformation like other conventional methods. In addition, several examples clarify the relevant features of this presented method, so the results of this study are debated to show that this method is a powerful tool and promising to illustrate the accuracy and efficiency for solving these problems. To evaluate the results in the iterative process we used the Matlab symbolic manipulator.
AA Abbass, HL Hussein, WA Shukur, J Kaabi, R Tornai, Webology, 2022 Individual’s eye recognition is an important issue in applications such as security systems, credit card control and guilty identification. Using video images cause to destroy the limitation of fixed images and to be able to receive users’ image under any condition as well as doing the eye recognition. There are some challenges in these systems; changes of individual gestures, changes of light, face coverage, low quality of video images and changes of personal characteristics in each frame. There is a need for two phases in order to do the eye recognition using images; revelation and eye recognition which will use in the security systems to identify the persons. The mai
... Show MoreThe rhetorical significance of history and the presentation of events through ages allow us to understand the mental changes and to investigate the evolution of the ideology of literary philosophy.
... Show More
Resumen
Sotileza , localismo santandrino de sutileza , es la parte más fina del aparejo de pescar donde va el anzuelo. Es la obra maestro de José María de Pereda.Su ambiente , el Santander viejo, anterior al año 50,evocado emocionadamente - emociόn romántica contenida en los trazos sobrios y firmes de un naturalism psicolόgico y paisajista,el Santander que el autor confiesa poseer en el fondo de su corazόn,«y tenerlo esculpido en la memoria de tal suerte que ,a ojos cerrados,me atrevería a trazarle con todo su perímetro y sus calles, y el color de sus piedras, y el número, y los nombres, y hasta las caras de sus habitantes».Dentro de la grandeza primaria de las criaturas de Pere
... Show MoreIt is axiomatical that the narrative prospective is profoundly significant to the writer who intends to commence his sketch of projected novel. It is the pillar of comprehensive absorbing as the writer should commit himself to circular his own concepts to the reader of his narrative characters.
The dilemma of plot-perception is a twofold aspect; partly offers the question: what is the authors stand in regard to his characters? And: what is the aim of this theme? These correlative questions are inseparable since the reader who wishes
... Show MoreSommaire
La question de la violence et de l'agressivité porte une importance remarquable dans l’esprit de Jean Genet qui estime le crime en le considérant comme beau. Il lui donne une valeur suprême. Il le glorifie avec ses personnages criminels. Le langage théâtral genétien est violent qui conduit à la fin à l’acte agressif, le crime et la mort. Ce théâtre qui aborde la condition humaine retrace sur la scène le chemin tragique de l’homme moderne.
... Show MoreIn this paper, the construction of Hermite wavelets functions and their operational matrix of integration is presented. The Hermite wavelets method is applied to solve nth order Volterra integro diferential equations (VIDE) by expanding the unknown functions, as series in terms of Hermite wavelets with unknown coefficients. Finally, two examples are given
في هذا البحث، تم تنفيذ الطريقة الحسابية الفعالة (ECM) المستندة إلى متعددة الحدود القياسية الأحادية لحل مشكلة تدفق جيفري-هامل غير الخطية. علاوة على ذلك، تم تطوير واقتراح الطرق الحسابية الفعالة الجديدة في هذه الدراسة من خلال وظائف أساسية مناسبة وهي متعددات الحدود تشيبشيف، بيرنشتاين، ليجندر، هيرمت. يؤدي استخدام الدوال الأساسية إلى تحويل المسألة غير الخطية إلى نظام جبري غير خطي من المعادلات، والذي يتم حله بع
... Show More