Preferred Language
Articles
/
ZBdqPo8BVTCNdQwCimWd
Hybrid approaches to feature subset selection for data classification in high-dimensional feature space
...Show More Authors

This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spent to achieve the best classification accuracy.

Crossref
View Publication
Publication Date
Wed Nov 01 2017
Journal Name
Practice Periodical On Structural Design And Construction
Safety Innovation and Integration in High-Performance Designs: Benefits, Motivations, and Obstacles
...Show More Authors

View Publication
Scopus (16)
Crossref (13)
Scopus Crossref
Publication Date
Sun Sep 22 2019
Journal Name
Baghdad Science Journal
Spectral Properties of Hybrid of Rhodamine (6G) Dyes Doped Epoxy Resin Dissolved in Chloroform
...Show More Authors

            The research is dealing with the absorption and fluorescence spectra for the hybrid of  an Epoxy Resin doped with organic dye Rhodamine (R6G) of different concentrations (5*10-6, 5*10-5, 1*10-5, 1*10-4, 5*10-4) Mol/ℓ at room temperature. The Quantum efficiency Qfm, the rate of fluorescence emission Kfm (s-1), the non-radiative lifetime τfm (s), fluorescence lifetime τf and the Stokes shift were calculated. Also the energy gap (Eg) for each dye concentration was evaluated. The results showed that the maximum quantum effi

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
Innovations in t-way test creation based on a hybrid hill climbing-greedy algorithm
...Show More Authors

<p>In combinatorial testing development, the fabrication of covering arrays is the key challenge by the multiple aspects that influence it. A wide range of combinatorial problems can be solved using metaheuristic and greedy techniques. Combining the greedy technique utilizing a metaheuristic search technique like hill climbing (HC), can produce feasible results for combinatorial tests. Methods based on metaheuristics are used to deal with tuples that may be left after redundancy using greedy strategies; then the result utilization is assured to be near-optimal using a metaheuristic algorithm. As a result, the use of both greedy and HC algorithms in a single test generation system is a good candidate if constructed correctly. T

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Mon Oct 10 2016
Journal Name
Iraqi Journal Of Science
Satellite image classification using KL-transformation and modified vector quantization
...Show More Authors

In this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water

... Show More
Publication Date
Sun Jan 10 2016
Journal Name
British Journal Of Applied Science &amp; Technology
The Effect of Classification Methods on Facial Emotion Recognition ‎Accuracy
...Show More Authors

The interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu May 05 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Classification SINGLE-LEAD ECG by using conventional neural network algorithm
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Oct 01 2016
Journal Name
2016 6th International Conference On Information Communication And Management (icicm)
Enhancing case-based reasoning retrieval using classification based on associations
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some of linear classification models with practical application
...Show More Authors

Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear  classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.

In this paper we have been focus for the comparison between three forms for classification data belongs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 26 2020
Journal Name
Iraqi Journal Of Science
New Updated Classification of Shallow Earthquakes Based on Faulting Style
...Show More Authors

Earthquakes occur on faults and create new faults. They also occur on  normal, reverse and strike-slip faults. The aim of this work is to suggest a new unified classification of Shallow depth earthquakes based on the faulting styles, and to characterize each class. The characterization criteria include the maximum magnitude, focal depth, b-constant value, return period and relations between magnitude, focal depth and dip of fault plane. Global Centroid Moment Tensor (GCMT) catalog is the source of the used data. This catalog covers the period from Jan.1976 to Dec. 2017. We selected only the shallow (depth less than 70kms) pure, normal, strike-slip and reverse earthquakes (magnitude ≥ 5) and excluded the oblique earthquakes. Th

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Heart Disease Classification–Based on the Best Machine Learning Model
...Show More Authors

    In recent years, predicting heart disease has become one of the most demanding tasks in medicine. In modern times, one person dies from heart disease every minute. Within the field of healthcare, data science is critical for analyzing large amounts of data. Because predicting heart disease is such a difficult task, it is necessary to automate the process in order to prevent the dangers connected with it and to assist health professionals in accurately and rapidly diagnosing heart disease. In this article, an efficient machine learning-based diagnosis system has been developed for the diagnosis of heart disease. The system is designed using machine learning classifiers such as Support Vector Machine (SVM), Nave Bayes (NB), and K-Ne

... Show More
View Publication Preview PDF
Scopus (12)
Scopus Crossref