This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spent to achieve the best classification accuracy.
In this article, the high accuracy and effectiveness of forecasting global gold prices are verified using a hybrid machine learning algorithm incorporating an Adaptive Neuro-Fuzzy Inference System (ANFIS) model with Particle Swarm Optimization (PSO) and Gray Wolf Optimizer (GWO). The hybrid approach had successes that enabled it to be a good strategy for practical use. The ARIMA-ANFIS hybrid methodology was used to forecast global gold prices. The ARIMA model is implemented on real data, and then its nonlinear residuals are predicted by ANFIS, ANFIS-PSO, and ANFIS-GWO. The results indicate that hybrid models improve the accuracy of single ARIMA and ANFIS models in forecasting. Finally, a comparison was made between the hybrid foreca
... Show MoreThe data preprocessing step is an important step in web usage mining because of the nature of log data, which are heterogeneous, unstructured, and noisy. Given the scalability and efficiency of algorithms in pattern discovery, a preprocessing step must be applied. In this study, the sequential methodologies utilized in the preprocessing of data from web server logs, with an emphasis on sub-phases, such as session identification, user identification, and data cleansing, are comprehensively evaluated and meticulously examined.
Cloud storage provides scalable and low cost resources featuring economies of scale based on cross-user architecture. As the amount of data outsourced grows explosively, data deduplication, a technique that eliminates data redundancy, becomes essential. The most important cloud service is data storage. In order to protect the privacy of data owner, data are stored in cloud in an encrypted form. However, encrypted data introduce new challenges for cloud data deduplication, which becomes crucial for data storage. Traditional deduplication schemes cannot work on encrypted data. Existing solutions of encrypted data deduplication suffer from security weakness. This paper proposes a combined compressive sensing and video deduplication to maximize
... Show MoreFinding orthogonal matrices in different sizes is very complex and important because it can be used in different applications like image processing and communications (eg CDMA and OFDM). In this paper we introduce a new method to find orthogonal matrices by using tensor products between two or more orthogonal matrices of real and imaginary numbers with applying it in images and communication signals processing. The output matrices will be orthogonal matrices too and the processing by our new method is very easy compared to other classical methods those use basic proofs. The results are normal and acceptable in communication signals and images but it needs more research works.
Background: Lateral cephalometric radiography is commonly used as a standard tool in orthodontic assessment and treatment planning. This study aimed to determine the tongue and surrounding space area in a sample of Iraqi adults with class I dental and skeletal pattern. Materials and methods: The study included thirty healthy subjects (15 males and 15 females) with an age ranged between 23-34 years and class I dental and skeletal pattern with no history of any sleep related disorders. The assessed cephalometric measurement included length and height of the tongue and position of hyoid bone from cervical line. Descriptive statistics were obtained for the data. Genders difference was evaluated by independent sample t-test. Results: There wer
... Show MoreThe current research presents a study of the sculptural body in the space of the theatrical show through reviewing most of the ideas, propositions and workings presented by philosophers and directors within the space of the show, that there were various experiences of employing those spatial formations through the mediator (the space) based on sculpturing the body in achieving those formations, which contributed in building a symbolic picture of various structural connotations. That was formulated through the research chapters, which include the first chapter (the methodological framework) which consists of two sections. The first section (the duality of space formation and imaginations). The second section (sculptural body sequences in
... Show MoreThe primary objective of this research be to develop a novel thought of fibrewise micro—topological spaces over B. We present the notions from fibrewise micro closed, fibrewise micro open, fibrewise locally micro sliceable, and fibrewise locally micro-section able micro topological spaces over B. Moreover, we define these concepts and back them up with proof and some micro topological characteristics connected to these ideas, including studies and fibrewise locally micro sliceable and fibrewise locally micro-section able micro topological spaces, making it ideal for applications where high-performance processing is needed. This paper will explore the features and benefits of fibrewise locally micro-sliceable and fibrewise locally
... Show More