Preferred Language
Articles
/
ZBdqPo8BVTCNdQwCimWd
Hybrid approaches to feature subset selection for data classification in high-dimensional feature space
...Show More Authors

This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spent to achieve the best classification accuracy.

Crossref
View Publication
Publication Date
Wed Jan 01 2020
Journal Name
Communications In Computer And Information Science
Performance Evaluation for Four Supervised Classifiers in Internet Traffic Classification
...Show More Authors

View Publication
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of International Dental And Medical Research
Evaluation of selection criteria for patients indicated for fixed orthodontic appliance treatment
...Show More Authors

Scopus (1)
Scopus
Publication Date
Mon Jun 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Common Fixed Point problem for Classes of Nonlinear Maps in Hilbert Space
...Show More Authors
Abstract<p>in this article, we present a definition of k-generalized map independent of non-expansive map and give infinite families of non-expansive and k-generalized maps new iterative algorithms. Such algorithms are also studied in the Hilbert spaces as the potential to exist for asymptotic common fixed point.</p>
View Publication
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Tue Dec 11 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Episiotomy preventing approaches among midwives in Kurdistan region
...Show More Authors

Objectives: This study aimed to findout approaches which used by midwives for avoiding episiotomy and assess their knowledge regarding complications of episiotomy in three main cities of Kurdistan region. Methodology: A cross-sectional study was conducted between 1st January and 15th April 2014 in the three biggest maternity teaching hospitals. The study population included all the midwives (n=53) working in delivery rooms. Data were collected through interview with midwives. Results: The Midwives stated the followings as complications of episiotomy: tear into the rectum muscle or rectum itself (52.8%), bleedi

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 30 2015
Journal Name
International Journal Of Computer Techniques
Multifractal-Based Features for Medical Images Classification
...Show More Authors

This paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4

... Show More
Preview PDF
Publication Date
Fri May 17 2019
Journal Name
Lecture Notes In Networks And Systems
Features Selection for Intrusion Detection System Based on DNA Encoding
...Show More Authors

Intrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system

... Show More
Scopus (5)
Scopus
Publication Date
Sun Dec 06 2009
Journal Name
Baghdad Science Journal
Automatic Block Selection for Synthesizing Texture Images using Genetic Algorithms
...Show More Authors

Texture synthesis using genetic algorithms is one way; proposed in the previous research, to synthesis texture in a fast and easy way. In genetic texture synthesis algorithms ,the chromosome consist of random blocks selected manually by the user .However ,this method of selection is highly dependent on the experience of user .Hence, wrong selection of blocks will greatly affect the synthesized texture result. In this paper a new method is suggested for selecting the blocks automatically without the participation of user .The results show that this method of selection eliminates some blending caused from the previous manual method of selection.

View Publication Preview PDF
Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Diagnosing Water Problem for Asmari Reservoir in Abu Ghirab Oilfield Using Analytical and Numerical Approaches
...Show More Authors

Asmari is the main productive reservoir in Abu Ghirab oilfield in the south-east part of Iraq. It has history production extends from 1976 up to now with several close periods. Recently, the reservoir suffers some problems in production, which are abstracted as water production rising with oil production declining in most wells. The water problem type of the field and wells is identified by using Chan's diagnostic plots (water oil ratio (WOR) and derivative water oil ratio (WOR') against time). The analytical results show that water problem is caused by the channeling due to high permeability zones, high water saturation zones, and faults or fracturing. The numerical approach is also used to study the water movement inside the reser

... Show More
Crossref (1)
Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Diagnosing Water Problem for Asmari Reservoir in Abu Ghirab Oilfield Using Analytical and Numerical Approaches
...Show More Authors

Asmari is the main productive reservoir in Abu Ghirab oilfield in the south-east part of Iraq. It has history production extends from 1976 up to now with several close periods. Recently, the reservoir suffers some problems in production, which are abstracted as water production rising with oil production declining in most wells. The water problem type of the field and wells is identified by using Chan's diagnostic plots (water oil ratio (WOR) and derivative water oil ratio (WOR') against time). The analytical results show that water problem is caused by the channeling due to high permeability zones, high water saturation zones, and faults or fracturing. The numerical approach is also used to study the water movement insi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Oct 29 2020
Journal Name
Complexity
Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting
...Show More Authors

The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s

... Show More
View Publication
Scopus (54)
Crossref (26)
Scopus Clarivate Crossref