In this study, we present a new steganography method depend on quantizing the perceptual color spaces bands. Four perceptual color spaces are used to test the new method which is HSL, HSV, Lab and Luv, where different algorithms to calculate the last two-color spaces are used. The results reveal the validity of this method as a steganoic method and analysis for the effects of quantization and stegano process on the quality of the cover image and the quality of the perceptual color spaces bands are presented.
This paper present the fast and robust approach of English text encryption and decryption based on Pascal matrix. The technique of encryption the Arabic or English text or both and show the result when apply this method on plain text (original message) and how will form the intelligible plain text to be unintelligible plain text in order to secure information from unauthorized access and from steel information, an encryption scheme usually uses a pseudo-random enecryption key generated by an algorithm. All this done by using Pascal matrix. Encryption and decryption are done by using MATLAB as programming language and notepad ++to write the input text.This paper present the fast and robust approach of English text encryption and decryption b
... Show MoreThe aims of the paper are to present a modified symmetric fuzzy approach to find the best workable compromise solution for quadratic fractional programming problems (QFPP) with fuzzy crisp in both the objective functions and the constraints. We introduced a modified symmetric fuzzy by proposing a procedure, that starts first by converting the quadratic fractional programming problems that exist in the objective functions to crisp numbers and then converts the linear function that exists in the constraints to crisp numbers. After that, we applied the fuzzy approach to determine the optimal solution for our quadratic fractional programming problem which is supported theoretically and practically. The computer application for the algo
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreSuccessfully, theoretical equations were established to study the effect of solvent polarities on the electron current density, fill factor and efficiencies of Tris (8-hydroxy) quinoline aluminum (Alq3)/ ZnO solar cells. Three different solvents studied in this theoretical works, namely 1-propanol, ethanol and acetonitrile. The quantum model of transition energy in donor–acceptor system was used to derive a current formula. After that, it has been used to calculate the fill factor and the efficiency of the solar cell. The calculations indicated that the efficiency of the solar cell is influenced by the polarity of solvents. The best performance was for the solar cell based on acetonitrile as a solvent with electron current density of (5.0
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreBackground: The demand for better esthetic during orthodontic treatment has increased nowadays, so orthodontists starting using esthetic arch wires, brackets and ligatures.Tooth colored brackets were introduced in different types of materials. Sapphire ceramic brackets are one type of esthetic brackets and their color stability remains the main concern for the clinicians and patients at the same time. The present study design to evaluate the effect of three different staining materials (pepsi, black tea and cigarette smoke) on the stainability of sapphire ceramic brackets bonded with three types of light cure orthodontic adhesives which include: Resilience, Enlight and Transbond. Materials and Methods: The sample consisted of three hundre
... Show MoreThe research deals with the topic of (formal formation and its semantic projections in the design interior spaces of daily newspapers buildings) including the research problem summarized by the following question: (does the formal formation do a semantic role in the design of the interior spaces?). The research objective has been evident in discovering strong and weak points in the formal formations and their semantic projections in the design of the interior spaces for the daily newspapers buildings, reaching at the best design foundations, and shedding light on the cognitive and scientific importance of the research, and the objective, temporal and spatial limits in addition to identifying the terms. The theoretical framework includes
... Show MoreHeart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show More