In this research project, a tip-tilting angle of a photovoltaic solar cell was developed to increase generated electrical power output. An active, accurate, and simple dual-axis tracking system was designed by using an Arduino Uno microprocessor. The system consisted of two sections: software and apparatus (hardware). It was modified by using a group of light-dependent resistor sensors, and two DC servo motors were utilized to rotate the solar panel to a location with maximum sunlight. These components were arranged in a mechanical configuration with the gearbox. The three locations of the solar cell were chosen according to the tilt angle values, at zero angles, which included an optimal 33-degree angle for the Baghdad location and a variable angle with the dual-axis tracking system. For maximum value of the extracted solar energy, a photovoltaic solar panel that collects sunlight should be in normal position onto this radiation. Solar trackers relocated the panel toward the path of the Sun to ensure that the collector rotated at an optimal tilt angle. The results showed that the generated power at the dual-axis position was 3.384 watts per hour (W/h), the 33-degree angle yielded 2.237 W/h, and the zero-degree angle yielded 1.09 W/h. The results confirmed that the performance of a dual-axis solar tracking system is active and efficient.
A novel analytical method is developed for the determination of azithromycin. The method utilizes continuous flow injection analysis to enhance the chemiluminescence system of luminol, H2O2, and Cr(III). The method demonstrated a linear dynamic range of 0.001–100 mmol L-1 with a high correlation coefficient (r) of 0.9978, and 0.001–150 mmol L-1 with a correlation coefficient (r) of 0.9769 for the chemiluminescence emission versus azithromycin concentration. The limit of detection (L.O.D.) of the method was found to be 18.725 ng.50 µL−1 based on the stepwise dilution method for the lowest concentration within the linear dynamic range of the calibration graph. The relative standard deviation (R.S.D. %) for n = 6 was less than 1.2%
... Show MoreThis paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations coupled in both equations and boundary conditions. In order to understand how the reaction terms and the boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived. Moreover, the blow-up set under some restricted assumptions is studied.
The research has designed for studying the relationship between manufacturing strategy and its flexibility under the flexible manufacturing system with their reflection on the competitive environmental performance of the firm. To interpret and tackle the problem, a hypothesis has formulated stating that “ the competitive performance of a firm is interpreted by the manufacturing strategy and flexibility which are derived from the firm and its business strategies under the flexible manufacturing system”. Related literatures with their theoretical dissertations, which enhanced the thoughtful content, have analyzed. An illustrative case study on the flexible manufacturing system at Toyota Motors Corporation working at the g
... Show MoreTrickle irrigation is a system for supplying filtered water and fertilizer directly into the soil and water and it is allowed to dissipate under low pressure in an exact predetermined pattern. An equation to estimate the wetted area of unsaturated soil with water uptake by roots is simulated numerically using the HYDRUS-2D/3D software. In this paper, two soil types, which were different in saturated hydraulic conductivity were used with two types of crops tomato and corn, different values of emitter discharge and initial volumetric soil moisture content were assumed. It was assumed that the water uptake by roots was presented as a continuous sink function and it was introduced into Richard's equation in the unsaturated z
... Show MoreAir pollution is one of the important problems facing Iraq. Air pollution is the result of uncontrolled emissions from factories, car exhaust electric generators, and oil refineries and often reaches unacceptable limits by international standards. These pollutants can greatly affect human health and regular population activities. For this reason, there is an urgent need for effective devices to monitor the molecular concentration of air pollutants in cities and urban areas. In this research, an optical system has been built consisting of aHelium-Neonlaser,5mWand at 632.8 nm, a glass cell with a defined size, and a power meter(Gentec-E-model: uno) where a scattering of the laser beam occurs due to air pollution. Two pollutants were examin
... Show MorePeer-Reviewed Journal
In this work Laser wireless video communication system using intensity modualtion direct
detection IM/DD over a 1 km range between transmitter and receiver is experimentally investigated and
demonstrated. Beam expander and beam collimeter were implemented to collimete laser beam at the
transmitter and focus this beam at the receiver respectively. The results show that IM/DD communication
sysatem using laser diode is quite attractive for transmitting video signal. In this work signal to noise
ratio (S/N) higher than 20 dB is achieved in this work.
Laser is a powerful device that has a wide range of applications in fields ranging from materials science and manufacturing to medicine and fibre optic communications. One remarkable