In this research project, a tip-tilting angle of a photovoltaic solar cell was developed to increase generated electrical power output. An active, accurate, and simple dual-axis tracking system was designed by using an Arduino Uno microprocessor. The system consisted of two sections: software and apparatus (hardware). It was modified by using a group of light-dependent resistor sensors, and two DC servo motors were utilized to rotate the solar panel to a location with maximum sunlight. These components were arranged in a mechanical configuration with the gearbox. The three locations of the solar cell were chosen according to the tilt angle values, at zero angles, which included an optimal 33-degree angle for the Baghdad location and a variable angle with the dual-axis tracking system. For maximum value of the extracted solar energy, a photovoltaic solar panel that collects sunlight should be in normal position onto this radiation. Solar trackers relocated the panel toward the path of the Sun to ensure that the collector rotated at an optimal tilt angle. The results showed that the generated power at the dual-axis position was 3.384 watts per hour (W/h), the 33-degree angle yielded 2.237 W/h, and the zero-degree angle yielded 1.09 W/h. The results confirmed that the performance of a dual-axis solar tracking system is active and efficient.
In this research, main types of optical coatings are presented which are used as covers for solar cells, these coatings are reflect the infrared (heat) from the solar cell to increase the efficiency of the cell (because the cell’s efficiency is inversely proportional to the heat), then the theoretical and mathematical description of these optical coatings are presented, and an optical design is designed to meet this objective, its optical transmittance was calculated using (MATLAB R2008a) and (Open Filters 1.0.2) programs
A solar updraft tower power plant (solar tower) is a solar thermal power plant that utilizes a combination of solar
air collector and central updraft tube to generate an induced convective flow which drives pressure staged turbines to generate electricity.
This paper presents practical results of a prototype of a solar chimney with thermal mass, where the glass surface is replaced by transparence plastic cover. The study focused on chimney's basements kind effect on collected air temperatures. Three basements were used: concrete, black concrete and black pebbles basements. The study was conducted in Baghdad from August to November 2009.
The results show that the best chimney efficiency attaine
... Show MoreIn this work, the geomagnetic storms that occurred during solar cycles 23 and 24 were classified based on the value of the Disturbance Storm Time index (Dst), which was considered an indicator of the strength of geomagnetic conditions. The special criterion of Dst >-50 nT was adopted in the classification process of the geomagnetic storms based on the minimum daily value of the Dst-index. The number of geomagnetic storms that occurred during the study period was counted according to the adopted criteria, including moderate storms with (Dst >-50 nT), strong storms with (Dst >-100 nT), severe storms with (Dst >-200 nT), and great storms with (Dst >-350 nT). The statistica
Experimental measurements were done for characterizing current-voltage and power-voltage of two types of photovoltaic (PV) solar modules; monocrystalline silicon (mc-Si) and copper indium gallium di-selenide (CIGS). The conversion efficiency depends on many factors, such as irradiation and temperature. The assembling measures as a rule cause contrast in electrical boundaries, even in cells of a similar kind. Additionally, if the misfortunes because of cell associations in a module are considered, it is hard to track down two indistinguishable photovoltaic modules. This way, just the I-V, and P-V bends' trial estimation permit knowing the electrical boundaries of a photovoltaic gadget with accuracy. This measure
... Show MoreAbstract: The natural dye, Curcumin, was extracted from Curcuma longa using as a sensitizer in two types of dye sensitized solar cell (DSSC), and their characteristics were studied. The absorption spectrum of the dye solutions, as well as the wavelength of the maximum absorbance of the dye loaded TiO2 film has been studied. The X-Ray diffraction pattern of TiO2 film made with Doctor-Blading technique shown that the grain size of TiO2 was equal to be 40 nm. The electrical performances in terms of short circuit current, open circuit voltage and power conversion efficiency of cells were investigated.
In the present study, thin films of organic semiconductors Nickel PhthalocyanineTetrasulfonic Acid Tetrasodium Salt (NiPcTs) and inorganic semiconductor (CdS) prepared from the mixing of liquids for thesetwomaterials with different size ratios by the spin coating method on pre-patterned (Fluorine-doped Tin Oxide) FTO coated glass substrates and then the manufacture of solar cells. The properties of solar cells the study through the optical properties (absorption spectra, absorption coefficient, power gap) and electrical characteristics (continuous onductivity, Hall Effect and cell efficiency measurements) and Was obtainedThe efficiency of a multiple solar cell ranging from (0.16-13.2 %)