The aim of this paper is to present method for solving ordinary differential equations of eighth order with two point boundary conditions. We propose two-point osculatory interpolation to construct polynomial solution.
In this paper, our aim is to study variational formulation and solutions of 2-dimensional integrodifferential equations of fractional order. We will give a summery of representation to the variational formulation of linear nonhomogenous 2-dimensional Volterra integro-differential equations of the second kind with fractional order. An example will be discussed and solved by using the MathCAD software package when it is needed.
The purpose of this paper is to study the instability of the zero solution of some type of nonlinear delay differential equations of fourth order by using the Lyapunov-Krasovskii functional approach; we obtain some conditions of instability of solution of such equation.
The purpose of this paper is to study the instability of the zero solution of some type of nonlinear delay differential equations of fifth order with delay by using the Lyapunov-Krasovskii functional approach, we obtain some conditions of instability of solution of such equation.
The aim of this paper is adopted to give an approximate solution for advection dispersion equation of time fractional order derivative by using the Chebyshev wavelets-Galerkin Method . The Chebyshev wavelet and Galerkin method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are described based on the Caputo sense. Illustrative examples are included to demonstrate the validity and applicability of the proposed technique.
In this work, we are concerned with how to find an explicit approximate solution (AS) for the telegraph equation of space-fractional order (TESFO) using Sumudu transform method (STM). In this method, the space-fractional order derivatives are defined in the Caputo idea. The Sumudu method (SM) is established to be reliable and accurate. Three examples are discussed to check the applicability and the simplicity of this method. Finally, the Numerical results are tabulated and displayed graphically whenever possible to make comparisons between the AS and exact solution (ES).
In this paper, we have been used the Hermite interpolation method to solve second order regular boundary value problems for singular ordinary differential equations. The suggest method applied after divided the domain into many subdomains then used Hermite interpolation on each subdomain, the solution of the equation is equal to summation of the solution in each subdomain. Finally, we gave many examples to illustrate the suggested method and its efficiency.
This paper is illustrates the sufficient conditions of the uniformly asymptotically stable and the bounded of the zero solution of fifth order nonlinear differential equation with a variable delay τ(t)
A condense study was done to compare between the ordinary estimators. In particular the maximum likelihood estimator and the robust estimator, to estimate the parameters of the mixed model of order one, namely ARMA(1,1) model.
Simulation study was done for a varieties the model. using: small, moderate and large sample sizes, were some new results were obtained. MAPE was used as a statistical criterion for comparison.
A watermark is a pattern or image defined in a paper that seems as different shades of light/darkness when viewed by the transmitted light which used for improving the robustness and security. There are many ways to work Watermark, including the addition of an image or text to the original image, but in this paper was proposed another type of watermark is add curves, line or forms have been drawn by interpolation, which produces watermark difficult to falsify and manipulate it. Our work suggests new techniques of watermark images which is embedding Cubic-spline interpolation inside the image using Bit Plane Slicing. The Peak to Signal Noise Ratio (PSNR) and Mean Square Error (MSE) value is calculated so that the quality of the original i
... Show MoreThe aim of this paper is to prove a theorem on the Riesz means of expansions with respect to Riesz bases, which extends the previous results of [1] and [2] on the Schrödinger operator and the ordinary differential operator of 4-th order to the operator of order 2m by using the eigen functions of the ordinary differential operator. Some Symbols that used in the paper: the uniform norm. <,> the inner product in L2. G the set of all boundary elements of G. ˆ u the dual function of u.