Preferred Language
Articles
/
YxeTP48BVTCNdQwCGWYB
Multi-Resolution Hierarchical Structure for Efficient Data Aggregation and Mining of Big Data
...Show More Authors

Big data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining and learning algorithms. Data mining algorithms are modified to accept the aggregated data as input. Hierarchical data aggregation serves as a paradigm under which novel …

Scopus Crossref
View Publication
Publication Date
Sun Jan 01 2017
Journal Name
Proceedings Of The Conference “recent Trends In Engineering Sciences And Sustainability”, Baghdad
GNSS positioning techniques for enhancing Google Earth data quality
...Show More Authors

Due to the easily access to the satellite images, Google Earth (GE) images have become more popular than other online virtual globes. However, the popularity of GE is not an indication of its accuracy. A considerable amount of literature has been published on evaluating the positional accuracy of GE data; however there are few studies which have investigated the subject of improving the GE accuracy. In this paper, a practical method for enhancing the horizontal positional accuracy of GE is suggested by establishing ten reference points, in University of Baghdad main campus, using different Global Navigation Satellite System (GNSS) observation techniques: Rapid Static, Post-Processing Kinematic, and Network. Then, the GE image for the study

... Show More
Publication Date
Mon Jan 01 2018
Journal Name
Lecture Notes Of The Institute For Computer Sciences, Social Informatics And Telecommunications Engineering
Sensor Data Classification for the Indication of Lameness in Sheep
...Show More Authors

View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Analysis of Mosul and Haditha Dam Flow Data
...Show More Authors

The expansion in water projects implementations in Turkey and Syria becomes of great concern to the workers in the field of water resources management in Iraq. Such expansion with the absence of bi-lateral agreement between the three riparian countries of Tigris and Euphrates Rivers; Turkey, Syria and Iraq, is expected to lead to a substantially reduction of water inflow to the territories of Iraq. Accordingly, this study consists of two parts: first part is aiming to study the changes of the water inflow to the territory of Iraq, at Turkey and Syria borders, from 1953 to 2009; the results indicated that the annual mean inflow in Tigris River was decreased from 677 m3/sec to 526 m3/sec, after operating Turkey reserv

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Aug 31 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
FDPHI: Fast Deep Packet Header Inspection for Data Traffic Classification and Management
...Show More Authors

Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c

... Show More
View Publication
Scopus (9)
Crossref (5)
Scopus Crossref
Publication Date
Fri Jun 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Correlation for fitting multicomponent vapor-liquid equilibria data and prediction of azeotropic behavior
...Show More Authors

Correlation equations for expressing the boiling temperature as direct function of liquid composition have been tested successfully and applied for predicting azeotropic behavior of multicomponent mixtures and the kind of azeotrope (minimum, maximum and saddle type) using modified correlation of Gibbs-Konovalov theorem. Also, the binary and ternary azeotropic point have been detected experimentally using graphical determination on the basis of experimental binary and ternary vapor-liquid equilibrium data.

            In this study, isobaric vapor-liquid equilibrium for two ternary systems: “1-Propanol – Hexane – Benzene” and its binaries “1-Propanol –

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Performance Equations for Household Compressors Depending on Manufacturing Data for Refrigerators and Freezers
...Show More Authors

Abstract

 A surface fitting model is developed based on calorimeter data for two famous brands of household compressors. Correlation equations of ten coefficient polynomials were found as a function of refrigerant saturating and evaporating temperatures in range of (-35℃ to -10℃) using Matlab software for cooling capacity, power consumption, and refrigerant mass flow rate.

Additional correlations equations for these variables as a quick choice selection for a proper compressor use at ASHRAE standard that cover a range of swept volume range (2.24-11.15) cm3.

The result indicated that these surface fitting models are accurate with in ± 15% for 72 compressors model of cooling cap

... Show More
View Publication Preview PDF
Publication Date
Thu Aug 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Some Estimation methods for the two models SPSEM and SPSAR for spatially dependent data
...Show More Authors

ABSTRUCT

In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error          ( λ ) in the model (SPSEM), estimated  the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jan 02 2025
Journal Name
Applied Computing And Informatics
WisdomModel: convert data into wisdom
...Show More Authors

Scopus (2)
Scopus
Publication Date
Wed Oct 01 2008
Journal Name
2008 First International Conference On Distributed Framework And Applications
A strategy for Grid based t-way test data generation
...Show More Authors

View Publication
Scopus (22)
Crossref (16)
Scopus Crossref
Publication Date
Sat Sep 20 2025
Journal Name
University Of Kirkuk Journal For Administrative And Economic Science
Anova For Fuzzy Data With Practical in The Medical Field
...Show More Authors

This research study Blur groups (Fuzzy Sets) which is the perception of the most modern in the application in various practical and theoretical areas and in various fields of life, was addressed to the fuzzy random variable whose value is not real, but the numbers Millbh because it expresses the mysterious phenomena or uncertain with measurements are not assertive. Fuzzy data were presented for binocular test and analysis of variance method of random Fuzzy variables , where this method depends on a number of assumptions, which is a problem that prevents the use of this method in the case of non-realized.

View Publication Preview PDF