This work presents an investigation on the fabrication and characterization of Fe doped zeolitic imidazolate framework (ZIF-8) of 1:1 M ratio of Zn:Fe (Fe/Zn-ZIF-8) and adsorption performances of acquired materials. The synthesized Zn-ZIF-8, Fe-ZIF-8, and Fe/Zn-ZIF-8 materials were characterized for the phase structure, morphology, elemental analysis and surface area by using X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM), Energy Dispersive X-Ray (EDX), and BET surface area, respectively. The results revealed the adsorption capacity was enhanced by incorporation of Fe into ZIF-8 structure. The CR dye adsorption capacities were 287, 219, and 412 mg/g for Zn-ZIF-8, Fe-ZIF-8, and Fe/Zn-ZIF-8 adsorbers, respectively. The CR adsorption obeyed to the pseudo 2nd order model and the Langmuir model was most closely matched during the high value of correlation coefficient (R2), signifying a palpable monolayer adsorption rather than multilayer. Copyright 2023 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the 6th International Conference on Materials Engineering and Nanotechnology.
Laue back reflection patterns for quartz crystal are indexed by using Orient Express- program to simulate orientation of single crystals from assignment of principle zones. An oriented quartz single crystal was used as a substrate to deposit Zn metal by controlled thermal evaporation to achieve single crystal films of Zn that are subsequently evaluated by x-ray powder diffraction.
This research involves the preparation of new ligands 1,1,2,2- tetrakis (sodium acetate thio)ethylene(L1) and 1,1,2- tris(sodiumacetatethio) ethylene(L2), through the reaction of disodium thioglycolate) with tetra chloro ethylene or tri chloro ethylene in (1:4) or (1:3) moler ratio . Homodinucliar complexes of general formlu [M2(L1)] and [M2(L2)ClH2O] , when M= Co(II), Ni(II), Cu (II) and Zn(II) also mono nuclear complexes of general formula [M(L2)] . The prepared complexes were characterized using spectral method (UV/Visible/ IR) , metal content analysis , magnetic and atomic measurements . The spectral and magnetic measurement indicats that some complexes have tetrahedral or square planar complexes environtment .
Pure and Fe-doped zinc oxide nanocrystalline films were prepared
via a sol–gel method using -
C for 2 h.
The thin films were prepared and characterized by X-ray diffraction
(XRD), atomic force microscopy (AFM), field emission scanning
electron microscopy (FE-SEM) and UV- visible spectroscopy. The
XRD results showed that ZnO has hexagonal wurtzite structure and
the Fe ions were well incorporated into the ZnO structure. As the Fe
level increased from 2 wt% to 8 wt%, the crystallite size reduced in
comparison with the pure ZnO. The transmittance spectra were then
recorded at wavelengths ranging from 300 nm to 1000 nm. The
optical band gap energy of spin-coated films also decreased as Fe
doping concentra
This investigation was carried out to study the treatment and recycling of wastewater in the cotton textile industry for an effluent containing three dyes: direct blue, sulphur black and vat yellow. The reuse of such effluent can only be made possible by appropriate treatment method such as chemical coagulation. Ferrous and ferric sulphate with and without calcium hydroxide were employed in this study as the chemical coagulants.
The results showed that the percentage removal of direct blue ranged between 91.4 and 94 , for sulphur black ranged between 98.7 and 99.5 while for vat yellow it was between 97 and 99.
In this paper waste natural material (date seed) and polymer particles(UF) were used for investigation of removal dye of the potassium permanganate. Also study effect some variables such as pH, dye concentration and adsorbent concentration on dye removal. 15 experimental runs were done using the itemized conditions designed established on the Box-Wilson design employed to optimize dye removal. The optimum conditions for the dye removal were found: (pH) 12, (dye con.) 2.38 ppm, (adsorbant con.) 0.0816 gm for date seed with 95.22% removal and for UF (pH) 12, (dye con.) 18 ppm, (adsorbant con.) 0.2235 gm with 91.43%. The value of R-square was 85.47% for Date seed and (88.77%) for UF.
... Show More
In this research, deposition of titanium oxide (TiO2) and vanadium oxide (V2O5) thin film in different mixing percentage (0, 25 ,50, 75 and100)% on the substrate of glass .The coating thickness was ( 50 nm ).
In this research contact angle was measured and the effect of weather conditions. Results showed that the value of the contact angle of the prepared films reached its highest value at 50% (TiO2+V2O5) was 160º.
The results showed that the optical transmittance of TiO2 and V2O5 thin film decrease with increasing the deposition angle and decrease with increasing V2O5 pro
... Show MoreABSTRACT:In this paper, Cd10–xZnxS (x = 0.1, 0.3, 0.5) films were deposited by using chemical spray pyrolysis technique, the molar concentration precursor solution was 0.15 M/L. Depositions were done at 350°C on cleaned glass substrates. X-ray dif- fraction technique (XRD) studies for all the prepared film; all the films are crystalline with hexagonal structure .The optical properties of the prepared films were studied using measurements from VIS-UV-IR spectrophotometer at wave- length with the range 300 - 900 nm; the average transmission of the minimum doping ratio (Zn at 0.1%) was about 55% in the VIS region, it was decrease at the increasing of Zn concentration in the CdS films, The band gap of the doped CdS films was varied as 3.7, 3
... Show MoreStructural, optical, and electrical properties of thin films of CdS : Zn prepared by the solution – growth technique are reported as a function of zinc concentration. CdS are window layers influencing the photovoltaic response of CIS solar cells. The zinc doping concentration was varied from 0.05 to 0.5 wt %, zinc doping apparently increase the band gap and lowers the resistivity. All beneficial optical properties of chemically deposited CdS thin films for application as window material in heterojunction optoelectronic devices are retained. Heat treatment in air at 400 °C for 1h modify crystalline structure, optical, and electrical properties of solution growth deposited CdS : Zn films.