Objectives Dental implant is a revolution in dentistry; some shortages are still a focus of research. This study use long duration of radiofrequency (RF)–magnetron sputtering to coat titanium (Ti) implant with hydroxyapatite (HA) to obtain a uniform, strongly adhered in a few micrometers in thickness. Materials and Methods Two types of substrates, discs and root form cylinders were prepared using a grade 1 commercially pure (CP) Ti rod. A RF–magnetron sputtering device was used to coat specimens with HA. Magnetron sputtering was set at 150 W for 22 hours at 100°C under continuous argon gas flow and substrate rotation at 10 rpm. Coat properties were evaluated via field emission scanning electron microscopy (FESEM), scanning electron microscopy–energy dispersive X-ray (EDX) analysis, atomic force microscopy, and Vickers hardness (VH). Student’s t-test was used. Results All FESEM images showed a homogeneous, continuous, and crack-free HA coat with a rough surface. EDX analysis revealed inclusion of HA particles within the substrate surface in a calcium (Ca)/phosphorus (P) ratio (16.58/11.31) close to that of HA. Elemental and EDX analyses showed Ca, Ti, P, and oxygen within Ti. The FESEM views at a cross-section of the substrate showed an average of 7 µm coat thickness. Moreover, these images revealed a dense, compact, and uniform continuous adhesion between the coat layer and the substrate. Roughness result indicated highly significant difference between uncoated Ti and HA coat (p-value < 0.05). A significant improvement in the VH value was observed when coat hardness was compared with the Ti substrate hardness (p-value < 0.05). Conclusion Prolonged magnetron sputtering successfully coat Ti dental implants with HA in micrometers thickness which is well adhered essentially in excellent osseointegration.
Non-thermal argon plasma needle at atmospheric pressure was
constructed. The experimental setup was based on a simple and low
cost electric component that generates a sufficiently high electric
field at the electrodes to ionize the argon gas which flow at
atmospheric pressure. A high AC power supply was used with 1.1
kV and 19.57 kHz. Non-thermal Argon plasma used on blood
samples to show the ability of non-thermal plasma to promote blood
coagulation. Three tests have been done to show the ability of plasma
to coagulate both normal and anti-coagulant blood. Each blood
sample has been treated for varying time from 20sec. to 180sec. at
different distances. The results of the current study showed that the
co
The research aims to study the effect of an increase in funding the Equity by issuing new common shares on revenues ordinary shares, despite the issuance and marketing costs and the introduction of new shareholders that companies incur when issuing new common shares but it is the most important methods used to finance the Equity is funding the common shares it provides money sufficient to finance the large investments of the company and enhance the confidence of dealers with the company, so I designed this research in order to identify the impact of increased funding Equity issue new common shares to common shares revenues.
This research has included some of the theoretical concepts to each of the Equity
... Show MoreThe aim of this project was to study the in vitro effect of antineoplastic drugs (vincristine and vinblastine) on mice spermatozoa. Eighteen adult (age 8-9 weeks) male mice were divided into three groups equally. The animals in each group were slain by cervical dislocation, the testes were removed and two tails of epididymides isolated. Spermatozoa were obtained from the two tails of epididymides by mincing in 500 µl TCM-199.The first group non-treated (unadded) as a control group, second group added 10 µg/ml of vincristine to TCM-199 and the third group added 10 µg/ml of vinblastine to TCM-199. After 10 minutes from added of vincristine and vinblastin measured the following test: spermatozoa activity, percentage dead spermatozoa and mor
... Show MoreThe current research includes the adsorption of Rhodmine-B Dye on the surface of Citrus Leaves using the technique of UV. Vis spectrophotometer to determine data of quantitative adsorption at various contact time, ionic strength, PH and temperature conditions. As a function of temperatures 25,35,45,55 0C, the dsorption phenomenon was examined, and the results showed that Rhodamine-B adsorption Citrus leaves rose with increasing temperatures on the surface (endothermic process). Using various NaCl solution concentrations, the effect of ionic strength on adsorption has also been studied. Increasing the importance of ionic strength has been shown to improve the amount of adsorption of Rhodamine-B on citrus leaves at constant temp
... Show MoreA laboratory experiment was carried out according to a completely randomized design with four repetitions on the seeds resulting from a field experiment applied for the two seasons, 2020 and 2021, to find out the effect of the cultivars (Ambar 33, Yasamin, Dijlah, Ambar Al-Baraka and Furat 1) and the harvest dates (at physiological maturity and after 7 and 14, 21 and 28 days of physiological maturity) on the vigour of rice seeds. The results showed the superiority of the seeds of the cultivar Anbar Al-Baraka at first and final counting, dry weight of the seedling, seedling vigor index and electrical conductivity, and the superiority of the seeds of Dijla cultivar at accelerated aging test and cold test without significant difference with th
... Show MoreThe piled raft is a geotechnical composite construction consisting of three elements: piles, raft and soil.
In the design of piled rafts, the load shared between the piles and the raft, and the piles are used up to a
load level that can be of the same order of magnitude as the bearing capacity of a comparable single
pile or even greater. Therefore, the piled raft foundation allows reduction of settlements in a very
economic way as compared to traditional foundation concepts.
This paper presents experimental study to investigate the behavior of piled raft system in sandy
soil. A small scale “prototype” model was tested in a sand box with load applied to the system through
a compression machine. The settlement was