Wireless Body Area Sensor Network (WBASN) is gaining significant attention due to its applications in smart health offering cost-effective, efficient, ubiquitous, and unobtrusive telemedicine. WBASNs face challenges including interference, Quality of Service, transmit power, and resource constraints. Recognizing these challenges, this paper presents an energy and Quality of Service-aware routing algorithm. The proposed algorithm is based on each node's Collaboratively Evaluated Value (CEV) to select the most suitable cluster head (CH). The Collaborative Value (CV) is derived from three factors, the node's residual energy, the distance vector between nodes and personal device, and the sensor's density in each CH. The CEV algorithm operates in the following manner: CHs are dynamically selected in each transmission round based on the nodes' CVs. The algorithm considered the patient's condition classification to guarantee safety and attain a response speed appropriate for their current state. So, data is categorized into Very-Critical, Critical, and Normal data classes using the supervised learning vector quantization (LVQ) classifier. Very Critical data is sent to the emergency center to dispatch an ambulance, Critical data is transmitted to a doctor, and Normal data is sent to a data center. This methodology promotes efficient and reliable intra-network communication, ensuring prompt and precise data transmission, and reducing frequent recharging. Comparative analyses reveal that the proposed algorithm outperforms ERRS (Energy-Efficient and Reliable Routing Scheme) and LEACH (low energy adaptive clustering hierarchy) regarding network longevity by 27% and 33%, augmenting network stability by 12% and 45% over the aforementioned protocols, respectively. The performance was conducted in OMNeT++ simulator
Tight reservoirs have attracted the interest of the oil industry in recent years according to its significant impact on the global oil product. Several challenges are present when producing from these reservoirs due to its low to extra low permeability and very narrow pore throat radius. Development strategy selection for these reservoirs such as horizontal well placement, hydraulic fracture design, well completion, and smart production program, wellbore stability all need accurate characterizations of geomechanical parameters for these reservoirs. Geomechanical properties, including uniaxial compressive strength (UCS), static Young’s modulus (Es), and Poisson’s ratio (υs), were measured experimentally using both static and dynamic met
... Show MoreCoupling reaction of 4-amino antipyrene with 4-amino benzoic acid gave bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2]Cl2 . The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the complexes formed were studied following the mol
... Show MoreNew twin compounds having four-, five-, and seven- membered heterocyclic rings were synthesized via Schiff bases (1a,b) which were obtained by the condensation of o-tolidine with two moles of 4- N,N-dimethyl benzaldehyde or 4- chloro benzaldehyde. The reaction of these Schiff bases with two moles of phenyl isothiocyanate, phenyl isocyanate or naphthyl isocyanate as in scheme(1) led to the formation of bis -1,3- diazetidin- 2- thion and bis -1,3- diazetidin -2-one derivatives (2-4 a,b). While in scheme (2) bis imidazolidin-4-one (5a,b) ,bistetrazole (6a,b) and bis thiazolidin-4-one (7a,b) derivatives were produced by reacting the mentioned Schiff bases(1a,b)with two moles of glycine, sodium azide or thioglycolic acid, respectively. The new b
... Show MoreViscosities (η) and densities (ρ) of atenolol and propranolol hydrochloride in water and in concentrations (0.05 M) and (0.1 M) aqueous solution of threonine have been used to reform different important thermodynamic parameters like apparent molal volumes fv partial molal volumes at infinite dilution fvo , transfer volume fvo (tr), the slop Sv , Gibbs free energy of activation for viscous flow of solution ΔG*1,2 and the B-coefficient have been calculated using Jones-Dole equation. These thermodynamic parameters have been predicted in terms of solute-solute and solute-solvent interaction.
This paper concerns is the preparation and characterization of a bidentate ligand [4-(5,5- dimethyl-3-oxocyclohex-1-enylamino)-N-(5-methylisoxazol-3-yl) benzene sulfonamide]. The ligand was prepared from fusing of sulfamethoxazole and dimedone at (140) ºC for half hour. The complex was prepared by refluxing the ligand with a bivalent cobalt ion using ethanol as a solvent. The prepared ligand and complex were identified using Spectroscopic methods. The proposed tetrahedral geometry around the metal ions studied were concluded from these measurements. Both molar ratio and continuous variation method were studied to determine metal to ligand ratio (M:L). The M to L ratio was found to be (1:1). The adsorption of cobalt complex was carried out
... Show MoreObjective: To evaluate two kinds of extraction (aqueous and ethanolic) for coriander using seeds, leaves and stems and
studying their antibacterial activity against nine different microorganisms.
Methodology: Coriander was selected to carry out this study. Seeds, leaves and stems were collected from local markets in
Baghdad then dried in shade for at least 10 days and grinded to fine powder. Aqueous hot extracts for 1hr. at (50
c) and
cold extracts for 24 hrs at (4
c) were performed by using seeds, leaves and stems then studied antibacterial effect against
nine different microorganisms by using well diffusion technique. Cold aqueous extracts of coriander seeds for 48 hrs. and
72 hrs and ethanolic extraction
Heat exchanger is an important device in the industry for cooling or heating process. To increase the efficiency of heat exchanger, nanofluids are used to enhance the convective heat . transfer relative to the base fluid. - Al2O3/water nanofluid is used as cold stream in the shell and double concentric tube heat exchanger counter current to the hot stream basis oil. These nanoparticles were of particle size of 40 nm and it was mixed with a base fluid (water) at volume
concentrations of 0.002% and 0.004%. The results showed that each of Nusselt number and overall heat transfer coefficient increased as nanofluid concentrations increased. The pressure drop of nanofluid increased slightly than the base fluid because
The studied succession (Lower Miocene-Early Middle Miocene) In central Iraq is distinguished by a wide range of fossils, mostly benthic foraminifera, and other fossils including bivalves, gastropods, echinoids fragments, red algae and coral are also presented. Index fossils of benthic foraminifera have been used for the purpose of determining the age of the Euphrates and Jeribe formations, because of their young age, wide geographical distribution and abundance in the selected wells.
The present study involves four selected wells of Ajil oil field and in terms of the biostratigraphy of the Euphrates, Dhiban, and Jeribe formations depending on benthic foraminifera and other associated fossils. Some of these fossils have a short ve
... Show MoreAs major nosocomial pathogens,
In this study, 20