Preferred Language
Articles
/
YhbaFooBVTCNdQwCuZAN
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achieves (4.81) dB GNSDR gain, (7.28) dB GSIR gain, and (3.39) dB GSAR gain in comparison to current approaches

Scopus Crossref
View Publication
Publication Date
Wed Mar 16 2022
Journal Name
International Journal Of Recent Contributions From Engineering, Science & It
Smart Learning based on Moodle E-learning Platform and Digital Skills for University Students
...Show More Authors

Publication Date
Mon Feb 21 2022
Journal Name
Applied Sciences
The Behavior of Hybrid Fiber-Reinforced Concrete Elements: A New Stress-Strain Model Using an Evolutionary Approach
...Show More Authors

Several stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the parti

... Show More
Scopus (32)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using a hybrid SARIMA-NARNN Model to Forecast the Numbers of Infected with (COVID-19) in Iraq
...Show More Authors

Coronavirus disease (COVID-19) is an acute disease that affects the respiratory system which initially appeared in Wuhan, China. In Feb 2019 the sickness began to spread swiftly throughout the entire planet, causing significant health, social, and economic problems. Time series is an important statistical method used to study and analyze a particular phenomenon, identify its pattern and factors, and use it to predict future values. The main focus of the research is to shed light on the study of SARIMA, NARNN, and hybrid models, expecting that the series comprises both linear and non-linear compounds, and that the ARIMA model can deal with the linear component and the NARNN model can deal with the non-linear component. The models

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 15 2019
Journal Name
Route Educational & Social Science Journal
The effect of the 4-H model on self-regulated learning and life skills for female chemistry students in the second intermediate year
...Show More Authors

Publication Date
Tue Dec 25 2018
Journal Name
Summaries Of Working Papers, Research And Experiments
E-learning at the College of Mass Communication, subject: public relations campaigns as a model
...Show More Authors

Publication Date
Tue Aug 31 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
FDPHI: Fast Deep Packet Header Inspection for Data Traffic Classification and Management
...Show More Authors

Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c

... Show More
View Publication
Scopus (9)
Crossref (5)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Computational Intelligence Systems
Evolutionary Feature Optimization for Plant Leaf Disease Detection by Deep Neural Networks
...Show More Authors

View Publication
Scopus (49)
Crossref (46)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Some Game via Ἷ-Semi-g-Separation Axioms
...Show More Authors

The research demonstrates new species of the games by applying separation axioms via  sets, where the relationships between the various species that were specified and the strategy of winning and losing to any one of the players, and their relationship with the concepts of separation axioms via  sets have been studied.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Open Access Journal Of Chemistry
Gas Storage and Separation in Metal Organic Frameworks
...Show More Authors

View Publication
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Open Access Journal Of Chemistry
Gas Storage and Separation in Metal Organic Frameworks
...Show More Authors

Crossref