This paper presents the matrix completion problem for image denoising. Three problems based on matrix norm are performing: Spectral norm minimization problem (SNP), Nuclear norm minimization problem (NNP), and Weighted nuclear norm minimization problem (WNNP). In general, images representing by a matrix this matrix contains the information of the image, some information is irrelevant or unfavorable, so to overcome this unwanted information in the image matrix, information completion is used to comperes the matrix and remove this unwanted information. The unwanted information is handled by defining {0,1}-operator under some threshold. Applying this operator on a given matrix keeps the important information in the image and removing the unwanted information by solving the matrix completion problem that is defined by P. The quadratic programming use to solve the given three norm-based minimization problems. To improve the optimal solution a weighted exponential is used to compute the weighted vector of spectral that use to improve the threshold of optimal low rank that getting from solving the nuclear norm and spectral norm problems. The result of applying the proposed method on different types of images is given by adopting some metrics. The results showed the ability of the given methods.
The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreIn the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThis study proposes a mathematical approach and numerical experiment for a simple solution of cardiac blood flow to the heart's blood vessels. A mathematical model of human blood flow through arterial branches was studied and calculated using the Navier-Stokes partial differential equation with finite element analysis (FEA) approach. Furthermore, FEA is applied to the steady flow of two-dimensional viscous liquids through different geometries. The validity of the computational method is determined by comparing numerical experiments with the results of the analysis of different functions. Numerical analysis showed that the highest blood flow velocity of 1.22 cm/s occurred in the center of the vessel which tends to be laminar and is influe
... Show MoreAbstract: Urinary Tract Infections (UTIs) are the most common bacterial infection in humans and a major cause of morbidity and they are the most common cause of hospital visits worldwide. Proper knowledge in identifying factors associated with urinary tract infection may allow the intervention to easily control of the disease in a timely manner. Therefore, the purpose of the study is determining the prevalence of UTI, diagnosis of causative bacterial agents and identifying the factors associated to the urinary tract infection among patients attending Medical City Hospital in Baghdad, Iraq. A total of 237, morning mid-stream urine samples were collected aseptically and the samples were diagnosed according to the standard methods. I
... Show MoreThe right of the patient to know the medical risks surrounding the medical intervention is one of the most prominent rights based on the principle of "physical safety", which has undergone several stages of development until it reached the development of the patient's independence in making medical decision without relying on the doctor, The patient's prior informed consent is informed of his / her medical condition. We will study this development in accordance with the French March 4, 2002 legislation on the rights of patients in the health system, whether it was earlier and later. We will highlight the development of the patient's right to "know the medical risks surrounding medical intervention" The legislation and its comparison with th
... Show MoreThree types of medical commercial creams Silvazine, Cinolon Tar and Hydroquinon Domina were incorporated in this study. The medical creams were taken directly and placed uniformly on the glass slide. Each type of pharmaceutical was weighed at 1 mg and dispersed on an area of 1x1 cm. This process ensures same thickness for all samples. The creams were analyzed by using double-beam UV/visible spectrophotometer Metertech SP8001. The absorption spectrum for each of samples was measured against wavelength range of 300–700 nm.