This paper presents the matrix completion problem for image denoising. Three problems based on matrix norm are performing: Spectral norm minimization problem (SNP), Nuclear norm minimization problem (NNP), and Weighted nuclear norm minimization problem (WNNP). In general, images representing by a matrix this matrix contains the information of the image, some information is irrelevant or unfavorable, so to overcome this unwanted information in the image matrix, information completion is used to comperes the matrix and remove this unwanted information. The unwanted information is handled by defining {0,1}-operator under some threshold. Applying this operator on a given matrix keeps the important information in the image and removing the unwanted information by solving the matrix completion problem that is defined by P. The quadratic programming use to solve the given three norm-based minimization problems. To improve the optimal solution a weighted exponential is used to compute the weighted vector of spectral that use to improve the threshold of optimal low rank that getting from solving the nuclear norm and spectral norm problems. The result of applying the proposed method on different types of images is given by adopting some metrics. The results showed the ability of the given methods.
Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreBackground: Body image is one of the most important psychological factors that affects adolescents’ personality and behavior. Body image can be defined as the person’s perceptions, thoughts, and feelings about his or her body.
Objectives: to identify the prevalence of body image concerns among secondary school students and its relation to different factors.
Subjects and methods: A cross-sectional study conducted in which 796 secondary school students participated and body shape concerns was investigated using the body shape questionnaire (BSQ-34).
Results: The prevalence of moderate/marked concern was (21.6%). Moderate/ marked body shape concern was significantly associated
... Show MoreIn the image processing’s field and computer vision it’s important to represent the image by its information. Image information comes from the image’s features that extracted from it using feature detection/extraction techniques and features description. Features in computer vision define informative data. For human eye its perfect to extract information from raw image, but computer cannot recognize image information. This is why various feature extraction techniques have been presented and progressed rapidly. This paper presents a general overview of the feature extraction categories for image.
In this paper, the goal of proposed method is to protect data against different types of attacks by unauthorized parties. The basic idea of proposed method is generating a private key from a specific features of digital color image such as color (Red, Green and Blue); the generating process of private key from colors of digital color image performed via the computing process of color frequencies for blue color of an image then computing the maximum frequency of blue color, multiplying it by its number and adding process will performed to produce a generated key. After that the private key is generated, must be converting it into the binary representation form. The generated key is extracted from blue color of keyed image then we selects a c
... Show MoreAbstract The goal of current study was to identify the relationship between addiction of self-images (Selfie) and personality disorder of narcissus, and the difference of significance the relationship between addiction self-images (selfie) and personality disorder narcissus at students of Mustansiriya university, addiction self- images (selfie) defined: a photograph that one has taken of oneself, typically one taken with a smartphone or webcam and shared via social media, edit and down lowed to social networking sites, and over time, the replacement of normal life virtual world, which is accompanied by a lack of a sense of time, and the formation of repeated patterns increase the risk of social and personal problems. To achieve the goals
... Show MoreThis study explores the challenges in Artificial Intelligence (AI) systems in generating image captions, a task that requires effective integration of computer vision and natural language processing techniques. A comparative analysis between traditional approaches such as retrieval- based methods and linguistic templates) and modern approaches based on deep learning such as encoder-decoder models, attention mechanisms, and transformers). Theoretical results show that modern models perform better for the accuracy and the ability to generate more complex descriptions, while traditional methods outperform speed and simplicity. The paper proposes a hybrid framework that combines the advantages of both approaches, where conventional methods prod
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More
Man was closely associated with nature in its various forms, as it represented the incubator for him in all areas of his life, so writers often made it a material for their literature and a fertile ground for their productions, so it appeared in its various forms and man’s need for it, its good and its bad in literature throughout history, and the Arabs are like Other nations, since the pre-Islamic era, nature was an important outlet and a refuge for poets in the production and creativity of literature and to this day, and when we talk about a poet from the Fatimid state, we find that nature - especially spring and its flowers - in that period took its take from literature and represented a phenomenon for many Among the
... Show More