High vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination by considering the traffic segment status when choosing the next intersection. RTISAR presents a new formula for assessing segment status based on connectivity, density, load segment, and cumulative distance toward the destination. A verity period mechanism is proposed to denote the projected period when a network failure is likely to occur in a particular segment. This mechanism can be calculated for each collector packet to minimize the frequency of RTISAR execution and to control the generation of collector packets. As a result, this mechanism minimizes the communication overhead generated during the segment status computation process. Simulations are performed to evaluate RTISAR, and the results are compared with those of intersection-based connectivity aware routing and traffic flow oriented routing. The evaluation results provided evidence that RTISAR outperforms in terms of packet delivery ratio, packet delivery delay, and communication overhead.
The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreFree Space Optical (FSO) technology offers highly directional, high bandwidth communication channels. This technology can provide fiber-like data rate over short distances. In order to improve security associated with data transmission in FSO networks, a secure communication method based on chaotic technique is presented. In this paper, we have turned our focus on a specific class of piece wise linear one-dimensional chaotic maps. Simulation results indicate that this approach has the advantage of possessing excellent correlation property. In this paper we examine the security vulnerabilities of single FSO links and propose a solution to this problem by implementing the chaotic signal generator “reconfigurable tent map”. As synchronizat
... Show MoreElectronic Health Record (EHR) systems are used as an efficient and effective method of exchanging patients’ health information with doctors and other key stakeholders in the health sector to obtain improved patient treatment decisions and diagnoses. As a result, questions regarding the security of sensitive user data are highlighted. To encourage people to move their sensitive health records to cloud networks, a secure authentication and access control mechanism that protects users’ data should be established. Furthermore, authentication and access control schemes are essential in the protection of health data, as numerous responsibilities exist to ensure security and privacy in a network. So, the main goal of our s
... Show MoreThe flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce cha
... Show MoreNowadays, it is quite usual to transmit data through the internet, making safe online communication essential and transmitting data over internet channels requires maintaining its confidentiality and ensuring the integrity of the transmitted data from unauthorized individuals. The two most common techniques for supplying security are cryptography and steganography. Data is converted from a readable format into an unreadable one using cryptography. Steganography is the technique of hiding sensitive information in digital media including image, audio, and video. In our proposed system, both encryption and hiding techniques will be utilized. This study presents encryption using the S-DES algorithm, which generates a new key in each cyc
... Show MoreIn this paper, we will present proposed enhance process of image compression by using RLE algorithm. This proposed yield to decrease the size of compressing image, but the original method used primarily for compressing a binary images [1].Which will yield increasing the size of an original image mostly when used for color images. The test of an enhanced algorithm is performed on sample consists of ten BMP 24-bit true color images, building an application by using visual basic 6.0 to show the size after and before compression process and computing the compression ratio for RLE and for the enhanced RLE algorithm