High vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination by considering the traffic segment status when choosing the next intersection. RTISAR presents a new formula for assessing segment status based on connectivity, density, load segment, and cumulative distance toward the destination. A verity period mechanism is proposed to denote the projected period when a network failure is likely to occur in a particular segment. This mechanism can be calculated for each collector packet to minimize the frequency of RTISAR execution and to control the generation of collector packets. As a result, this mechanism minimizes the communication overhead generated during the segment status computation process. Simulations are performed to evaluate RTISAR, and the results are compared with those of intersection-based connectivity aware routing and traffic flow oriented routing. The evaluation results provided evidence that RTISAR outperforms in terms of packet delivery ratio, packet delivery delay, and communication overhead.
In this paper, two of the local search algorithms are used (genetic algorithm and particle swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize a multi-objective function which is denoted as (total completion time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method is used for comparing the results for (n) jobs starting from (5-18). The results show that the two algorithms have found the optimal and near optimal solutions in an appropriate times.
This paper presents a study of the application of gas lift (GL) to improve oil production in a Middle East field. The field has been experiencing a rapid decline in production due to a drop in reservoir pressure. GL is a widely used artificial lift technique that can be used to increase oil production by reducing the hydrostatic pressure in the wellbore. The study used a full field model to simulate the effects of GL on production. The model was run under different production scenarios, including different water cut and reservoir pressure values. The results showed that GL can significantly increase oil production under all scenarios. The study also found that most wells in the field will soon be closed due to high water cuts. Howev
... Show MoreSurvival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show MoreSensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte
... Show MoreSmart cities have recently undergone a fundamental evolution that has greatly increased their potentials. In reality, recent advances in the Internet of Things (IoT) have created new opportunities by solving a number of critical issues that are allowing innovations for smart cities as well as the creation and computerization of cutting-edge services and applications for the many city partners. In order to further the development of smart cities toward compelling sharing and connection, this study will explore the information innovation in smart cities in light of the Internet of Things (IoT) and cloud computing (CC). IoT data is first collected in the context of smart cities. The data that is gathered is uniform. The Internet of Things,
... Show MoreThe first successful implementation of Artificial Neural Networks (ANNs) was published a little over a decade ago. It is time to review the progress that has been made in this research area. This paper provides taxonomy for classifying Field Programmable Gate Arrays (FPGAs) implementation of ANNs. Different implementation techniques and design issues are discussed, such as obtaining a suitable activation function and numerical truncation technique trade-off, the improvement of the learning algorithm to reduce the cost of neuron and in result the total cost and the total speed of the complete ANN. Finally, the implementation of a complete very fast circuit for the pattern of English Digit Numbers NN has four layers of 70 nodes (neurons) o
... Show MoreThe first successful implementation of Artificial Neural Networks (ANNs) was published a little over a decade ago. It is time to review the progress that has been made in this research area. This paper provides taxonomy for classifying Field Programmable Gate Arrays (FPGAs) implementation of ANNs. Different implementation techniques and design issues are discussed, such as obtaining a suitable activation function and numerical truncation technique trade-off, the improvement of the learning algorithm to reduce the cost of neuron and in result the total cost and the total speed of the complete ANN. Finally, the implementation of a complete very fast circuit for the pattern of English Digit Numbers NN has four layers of 70 nodes (neurons) o
... Show More