High vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination by considering the traffic segment status when choosing the next intersection. RTISAR presents a new formula for assessing segment status based on connectivity, density, load segment, and cumulative distance toward the destination. A verity period mechanism is proposed to denote the projected period when a network failure is likely to occur in a particular segment. This mechanism can be calculated for each collector packet to minimize the frequency of RTISAR execution and to control the generation of collector packets. As a result, this mechanism minimizes the communication overhead generated during the segment status computation process. Simulations are performed to evaluate RTISAR, and the results are compared with those of intersection-based connectivity aware routing and traffic flow oriented routing. The evaluation results provided evidence that RTISAR outperforms in terms of packet delivery ratio, packet delivery delay, and communication overhead.
This paper is attempt to study the nonlinear second order delay multi-value problems. We want to say that the properties of such kind of problems are the same as the properties of those with out delay just more technically involved. Our results discuss several known properties, introduce some notations and definitions. We also give an approximate solution to the coined problems using the Galerkin's method.
In this study the most stable isobar for some isobaric families (light and intermediate ) nuclei with mass number (A) equals to (15-30) & (101- 115) have been determined. This determination of stable nuclide can help to determine the suitable nuclide, which can be used in different fields.
Most stable isobar can be determined by two means. First: plot mass parabolas (plotting the binding energy (B.E) as a function of the atomic number (Z)) for these isobaric families, in this method most stable isobars represent the lowest point in mass parabola (the nuclide with the highest value of binding energy).
Second: calculated the atomic number for most stable isobar (ZA) value.
Our results show that
... Show MoreThe buildup factor was measured after irradiating Iraq carbon black powder using each of and sources respectively, using mixing ratios 40% & 50% for thickness range . The results showed that the buildup factor depends on energy and has limited dependence on the mixing ratio. The QIFT program succeeded accenting for the experimental results even for expected values more than 4 m.f.p outside the thickness range.
In this research , design and study a (beam expander) for the Nd – YAG laser with (1.06 ?m) Wavelength has been studied at 5X zoom with narrow diversion in the room temperature. by using (ZEMAX) to study the system. Evaluate its performance via (ZEMAX) outputs, as bright Spot Diagram via (RMS), Ray Fan Plot, Geometric Encircled Energy and the value of Focal shift. Then study the effect of field of view on the outputs in the room temperature.
In this paper, Response Surface Method (RSM) is utilized to carry out an investigation of the impact of input parameters: electrode type (E.T.) [Gr, Cu and CuW], pulse duration of current (Ip), pulse duration on time (Ton), and pulse duration off time (Toff) on the surface finish in EDM operation. To approximate and concentrate the suggested second- order regression model is generally accepted for Surface Roughness Ra, a Central Composite Design (CCD) is utilized for evaluating the model constant coefficients of the input parameters on Surface Roughness (Ra). Examinations were performed on AISI D2 tool steel. The important coefficients are gotten by achieving successfully an Analysis of V
... Show More