Nanopesticides are novel plant protection products offering numerous benefits. Because nanoparticles behave differently from dissolved chemicals, the environmental risks of these materials could differ from conventional pesticides. We used soil–earthworm systems to compare the fate and uptake of analytical‐grade bifenthrin to that of bifenthrin in traditional and nanoencapsulated formulations. Apparent sorption coefficients for bifenthrin were up to 3.8 times lower in the nano treatments than in the non‐nano treatments, whereas dissipation half‐lives of the nano treatments were up to 2 times longer. Earthworms in the nano treatments accumulated approximately 50% more bifenthrin than those in the non‐nano treatments. In the non‐nano treatments, most of the accumulated material was found in the earthworm tissue, whereas in the nano treatments, the majority resided in the gut. Evaluation of toxicokinetic modeling approaches showed that models incorporating the release rate of bifenthrin from the nanocapsule and distribution within the earthworm provided the best estimations of uptake from the nano‐formulations. Overall, our findings indicate that the risks of nanopesticides may be different from those of conventional formulations. The modeling presented provides a starting point for assessing risks of these materials but needs to be further developed to better consider the behavior of the nanoencapsulated pesticide within the gut system.
The transportation model is a well-recognized and applied algorithm in the distribution of products of logistics operations in enterprises. Multiple forms of solution are algorithmic and technological, which are applied to determine the optimal allocation of one type of product. In this research, the general formulation of the transport model by means of linear programming, where the optimal solution is integrated for different types of related products, and through a digital, dynamic, easy illustration Develops understanding of the Computer in Excel QM program. When choosing, the implementation of the form in the organization is provided.
In this study, a double frequency Q-switching Nd:YAG laser beam (1064 nm and λ= 532 nm, repetition rate 6 Hz and the pulse duration 10ns) have been used, to deposit TiO2 pure and nanocomposites thin films with noble metal (Ag) at various concentration ratios of (0, 10, 20, 30, 40 and 50 wt.%) on glass and p-Si wafer (111) substrates using Pulse Laser Deposition (PLD) technique. Many growth parameters have been considered to specify the optimum condition, namely substrate temperature (300˚C), oxygen pressure (2.8×10-4 mbar), laser energy (700) mJ and the number of laser shots was 400 pulses with thickness of about 170 nm. The surface morphology of the thin films has been studied by using atomic force microscopes (AFM). The Root Mean Sq
... Show MoreAddressed the problem of the research is marked: (Performing processors for the time between Impressionism and superrealism) the concept of time and how to submit artwork. The search came in four sections: general framework for research and identified the research problem and the need for him. With an indication of the importance of his presence. Then determine the research objectives of (detection processors performing to the concept of time in works of art in each of Impressionism and superrealism. And a comparison between them to reveal similarities and differences), followed by the establishment of boundaries Find three (objectivity, the temporal and spatial) were then determine the terms related to the title. Then provide the theore
... Show MoreRecently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
The increasing anti-bacterial drug resistance is one of the biggest challenges facing doctors around the globe, so finding alternative treatments is one of the ideal options to overcome this problem. The cruciferous family is one of the wealthiest plants worldwide because it contains the most important secondary metabolites, glucosinolates, known for their anti-microbial properties. The present study aimed to evaluate the anti-bacterial effect of glucosinolates (Sinigrin) against eight bacterial isolates (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Actinomyces, Proteus mirabilis and Streptococcus pneumoniae). The current study investigated six concentrations of pure
... Show More