Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 and 579 KCN4) from Department of Ophthalmology and Visual Sciences, Paulista Medical School, Federal University of São Paulo, São Paulo in Brazil and 1531 eyes (Healthy = 400, KCN1 = 378, KCN2 = 285, KCN3 = 200, KCN4 = 88) from Department of Ophthalmology, Jichi Medical University, Tochigi in Japan and used several accuracy metrics including Precision, Recall, F-Score, and Purity. We compared the proposed method with three other standard unsupervised algorithms including k-means, Kmedoids, and Spectral cluster. Based on two independent datasets, the proposed model outperformed the other algorithms, and thus could provide improved identification of the corneal status of the patients with keratoconus.
Interval methods for verified integration of initial value problems (IVPs) for ODEs have been used for more than 40 years. For many classes of IVPs, these methods have the ability to compute guaranteed error bounds for the flow of an ODE, where traditional methods provide only approximations to a solution. Overestimation, however, is a potential drawback of verified methods. For some problems, the computed error bounds become overly pessimistic, or integration even breaks down. The dependency problem and the wrapping effect are particular sources of overestimations in interval computations. Berz (see [1]) and his co-workers have developed Taylor model methods, which extend interval arithmetic with symbolic computations. The latter is an ef
... Show MoreThe concept of implementing e-government systems is growing widely all around the world and becoming an interest to all governments. However, governments are still seeking for effective ways to implement e-government systems properly and successfully. As services of e-government increased and citizens’ demands expand, the e-government systems become more costly to satisfy the growing needs. The cloud computing is a technique that has been discussed lately as a solution to overcome some problems that an e-government implementation or expansion is going through. This paper is a proposal of a new model for e-government on basis of cloud computing. E-Government Public Cloud Model EGPCM, for e-government is related t
... Show MoreAbstract
Objective / Purpose: Online social relationships through the emergence of Web 2.0 applications have become a new trend for researchers to study the behavior of consumers to shop online, as well as social networking sites are technologies that opened up opportunities for new business models. Therefore, a new trend has emerged, called social trade technology. In order to understand the behavioral intentions of the beneficiaries to adopt the technology of social trade, the current research aims at developing an electronic readiness framework and UTAUT model to understand the beneficiary's adoption of social trade technology.
Design/ methodology/ Approach: To achieve the obje
... Show MoreThe traditional centralized network management approach presents severe efficiency and scalability limitations in large scale networks. The process of data collection and analysis typically involves huge transfers of management data to the manager which cause considerable network throughput and bottlenecks at the manager side. All these problems processed using the Agent technology as a solution to distribute the management functionality over the network elements. The proposed system consists of the server agent that is working together with clients agents to monitor the logging (off, on) of the clients computers and which user is working on it. file system watcher mechanism is used to indicate any change in files. The results were presente
... Show MoreIn this study, we have created a new Arabic dataset annotated according to Ekman’s basic emotions (Anger, Disgust, Fear, Happiness, Sadness and Surprise). This dataset is composed from Facebook posts written in the Iraqi dialect. We evaluated the quality of this dataset using four external judges which resulted in an average inter-annotation agreement of 0.751. Then we explored six different supervised machine learning methods to test the new dataset. We used Weka standard classifiers ZeroR, J48, Naïve Bayes, Multinomial Naïve Bayes for Text, and SMO. We also used a further compression-based classifier called PPM not included in Weka. Our study reveals that the PPM classifier significantly outperforms other classifiers such as SVM and N
... Show MoreThe basic solution to overcome difficult issues related to huge size of digital images is to recruited image compression techniques to reduce images size for efficient storage and fast transmission. In this paper, a new scheme of pixel base technique is proposed for grayscale image compression that implicitly utilize hybrid techniques of spatial modelling base technique of minimum residual along with transformed technique of Discrete Wavelet Transform (DWT) that also impels mixed between lossless and lossy techniques to ensure highly performance in terms of compression ratio and quality. The proposed technique has been applied on a set of standard test images and the results obtained are significantly encourage compared with Joint P
... Show MoreThe present research aimed to test the imagination of children, and may build sample consisted of (400) a baby and child, selected by random way of four Directorates (first Resafe, second Resafe ,first alkarkh , second alkarkh), in order to achieve the objective of research the tow researchers have a test of imagination and extract the virtual and honesty plants distinguish paragraphs and paragraphs and difficulty factor became the test consists of (32), statistical methods were used (Pearson correlation coefficient, coefficient of difficult passages, highlight paragraphs, correlation equation, an equation wrong Standard) the tow researchers have a number of recommendations and proposals.
This research deals with a very important subject as it tries to change the theoretical and scientific heritage and some professional rules adopted in the newsroom. Most media students have difficulties in writing news for press correctly. The researcher tries to identify the compatibility of what is published in local news agencies with professional and academic standards.
The research finds detailed editorial rules for a number of news formats which will play an important role in writing news for press easily, especially for the beginners and newcomers. Also, it discovers a new fact denying the beliefs of some researchers and writers in not having news conclusion in news edited according to the inverted pyramid pattern.
The re
The research aims to propose a plan to reduce the waiting times in the Multiple Server queuing model (M, M, C) (FCFS, ∞, ∞), and adopt this plan, mainly on the arrival rate (λ), some process have been achieved in order to reduce the arrival rate per service channel that should reduces the overall waiting time in the system. This research is on two sections where the first deals with theory and how it has been approved the proposed method in theory and in mathematical equations as well as the second section, which dealt with the practical goal of applying the proposed method and comparing it with the traditional way, which was followed in calculating the performance measures in this model.
&