Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 and 579 KCN4) from Department of Ophthalmology and Visual Sciences, Paulista Medical School, Federal University of São Paulo, São Paulo in Brazil and 1531 eyes (Healthy = 400, KCN1 = 378, KCN2 = 285, KCN3 = 200, KCN4 = 88) from Department of Ophthalmology, Jichi Medical University, Tochigi in Japan and used several accuracy metrics including Precision, Recall, F-Score, and Purity. We compared the proposed method with three other standard unsupervised algorithms including k-means, Kmedoids, and Spectral cluster. Based on two independent datasets, the proposed model outperformed the other algorithms, and thus could provide improved identification of the corneal status of the patients with keratoconus.
The aim of this paper is to introduce the concepts of asymptotically p-contractive and asymptotically severe accretive mappings. Also, we give an iterative methods (two step-three step) for finite family of asymptotically p-contractive and asymptotically severe accretive mappings to solve types of equations.
The time spent in drilling ahead is usually a significant portion of total well cost. Drilling is an expensive operation including the cost of equipment and material used during the penetration of rock plus crew efforts in order to finish the well without serious problems. Knowing the rate of penetration should help in speculation of the cost and lead to optimize drilling outgoings. Ten wells in the Nasiriya oil field have been selected based on the availability of the data. Dynamic elastic properties of Mishrif formation in the selected wells were determined by using Interactive Petrophysics (IP V3.5) software based on the las files and log record provided. The average rate of penetration and average dynamic elastic propert
... Show MoreBackground:The demand for esthetic orthodontic appliances is increasing so that the esthetic orthodontic archwires were introduced. This in vitro study was designed to evaluate the surface roughness offiber-reinforced polymer composite (FRPC) archwires compared to coated nickel-titanium (NiTi) archwires immersed in artificial saliva. Materials and Methods:Three types of esthetic orthodontic archwires were used: FRPC (Dentaurum), Teflon coated NiTi (Dentaurum) and epoxy coated NiTi (Orthotechnology). They were round (0.018 inch) in cross section and cut into pieces of 15 mm in length.Forty pieces from each type were divided into four groups; one group was left at a dry condition and the other three groups were immersed in artificial saliva (
... Show MoreThe drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the
Abstract
The aim of this research is to concentrate on the of knowledge management activities, initial activities: (Acquisition, Selection, Generation, Assimilation, Emission) knowledge, and support activities: (Measurement, Control, Coordination, Leadership) that is manipulate and controlling in achieving knowledge management cases in organization, that’s is leads to knowledge chain model, then determining the level of membership for these activities to knowledge chain model in a sample of Iraqi organization pushed by knowledge (Universities). The research depends on check list for gaining the data required, theses check list designed by apparently in diagnosing research dimensions and measurem
... Show More