Preferred Language
Articles
/
YRaNGIcBVTCNdQwCnTZ4
Influence of A River Water Quality on The Efficiency of Water Treatment Using Artificial Neural Network
...Show More Authors

Tigris River is the lifeline that supplies a great part of Iraq with water from north to south. Throughout its entire length, the river is battered by various types of pollutants such as wastewater effluents from municipal, industrial, agricultural activities, and others. Hence, the water quality assessment of the Tigris River is crucial in ensuring that appropriate and adequate measures are taken to save the river from as much pollution as possible. In this study, six water treatment plants (WTPs) situated on the two-banks of the Tigris within Baghdad City were Al Karkh; Sharq Dijla; Al Wathba; Al Karama; Al Doura, and Al Wahda from northern Baghdad to its south, that selected to determine the removal efficiency of turbidity and the water quality index used to assess the quality of water for drinking purposes, in addition to finding the model based on past information to predict the quality of treated wastewater produced in each WTP using an artificial neural network (ANN) approach. The selected parameters for this study were turbidity, total hardness, total solids, suspended solids, and alkalinity. The results showed that all the WTPs possessed a high rate of efficiency in the removal of turbidity from raw water. Also, the results of the water quality index for all WTPs were classified over a study period of three years from 2015 to 2017 as being a good water quality and based on these results, the water treatment plants can be considered to be doing efficient water treatment process. The ANN model has been found at all WTPs to have a coefficient of determination (R2) for expected models was more than 0.7 to provide a WQI prediction tool that can be used with a moderate level of predictive acceptance to describe the suitability of WTP water quality for drinking purposes.

Publication Date
Fri Jun 29 2018
Journal Name
Journal Of Engineering
Improving Water Use Efficiency and Water Productivity for Okra Crop by using Subsurface Water Retention Technology
...Show More Authors

Utilizing the modern technologies in agriculture such as subsurface water retention techniques were developed to improve water storage capacities in the root zone depth. Moreover, this technique was maximizing the reduction in irrigation losses and increasing the water use efficiency. In this paper, a polyethylene membrane was installed within the root zone of okra crop through the spring growing season 2017 inside the greenhouse to improve water use efficiency and water productivity of okra crop. The research work was conducted in the field located in the north of Babylon Governorate in Sadat Al Hindiya Township seventy-eight kilometers from Baghdad city. Three treatments plots were used for the comparison using surface

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Using of Index Biological Integrity of Phytoplankton (P-IBI) in the Assessment of Water Quality in Don River Section
...Show More Authors

       The multimetric Phytoplankton Index of Biological Integrity (P-IBI) was applied throughout Rostov on Don city (Russia) on 8 Locations in Don River from April – October 2019. The P-IBI is composed from seven metrics: Species Richness Index (SRI), Density of Phytoplankton and total biomass of phytoplankton and Relative Abundance (RA) for blue-green Algae, Green Algae, Bacillariophyceae and Euglenaphyceae Algae. The average P-IBI values fell within the range of (45.09-52.4). Therefore, water throughout the entire study area was characterized by the equally "poor" quality. Negative points of anthropogenic impact detected at the stations are: Above the city of Rostov-on-Don (1 km, higher duct Aksai) was 38.57 i

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Nov 22 2017
Journal Name
Farm Machinery And Processes Management In Sustainable Agriculture, Ix International Scientific Symposium
INFLUENCE OF PHYSICAL PROPERTIES OF WATER-ADJUVANT MIXTURE ON THE DROPLET STAINS DEPOSITING ON AN ARTIFICIAL TARGET
...Show More Authors

View Publication
Clarivate Crossref
Publication Date
Mon Nov 11 2019
Journal Name
Journal Of Global Pharma Technology
Using the Water Quality Index as a Powerful Tool to Assess the Water Quality for Drinking Purposes in Al-Salam, Western Region of Baghdad City, Iraq
...Show More Authors

Background: Tap waters play an important role in fulfilling the people needs for drinking and domestic purposes. Contaminate the tap water with different pollutants has become an issue of great concern for 90% of people who are depended on the tap water as the main source of drinking. Pollutants can make their way easily into the delivering pipes which suffer from the leaking resulting in decreasing the quality of water. Objective: Therefore, assess the water quality for drinking purpose by calculating the water quality index is an important tool to ascertain whether the water is suitable for human consumption or not. Methods: In the present work, the water quality of the Al-Salam, western region of Baghdad city, Iraq was investigated for 7

... Show More
View Publication
Scopus (2)
Scopus
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Evaluation the turbidity removal efficiency in Al-Wahda water treatment plant using statistical indicators
...Show More Authors
Abstract<p>Most of drinking water consuming all over the world has been treated at the water treatment plant (WTP) where raw water is abstracted from reservoirs and rivers. The turbidity removal efficiency is very important to supply safe drinking water. This study is focusing on the use of multiple linear regression (MLR) and artificial neural network (ANN) models to predict the turbidity removal efficiency of Al-Wahda WTP in Baghdad city. The measured physico-chemical parameters were used to determine their effect on turbidity removal efficiency in various processes. The suitable formulation of the ANN model is examined throughout many preparations, trials, and steps of evaluation. The predict</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Oct 29 2022
Journal Name
Current Trends In Geotechnical Engineering And Construction (pp.52-61)
Drinking Water Assessment Using Statistical Analyses of AL-Muthana Water Treatment Plant
...Show More Authors

ENGLISH

Crossref (1)
Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Removal of Amoxicillin from Water by Adsorption on Water Treatment Residues
...Show More Authors

The presence of residual antibiotics in water results in the development of antibiotics resistant genes. The available wastewater treatment systems are not capable of removing such antibiotics from sewage. Thus, antibiotics need to be removed before the discharge of wastewater. Adsorption is among the promising techniques for the wastewater treatment to aid the removal of a wide range of organic and inorganic pollutants. The present work is a contribution to the search for an economical method for the removal of low concentrations of amoxicillin (AMX) from water by adsorption on water treatment residue, WTR, taken from a local drinking water facility. The chemical composition and the adsorptive characteristics of the material were first

... Show More
View Publication Preview PDF
Scopus (16)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Thu Aug 01 2024
Journal Name
Water Practice &amp; Technology
Artificial neural network and response surface methodology for modeling oil content in produced water from an Iraqi oil field
...Show More Authors
ABSTRACT<p>The majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value &lt;0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe</p> ... Show More
View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Mon Mar 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of bubble size in Bubble columns using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for bubble size prediction in bubble columns. However these correlations fail to predict bubble diameter over a wide range of conditions. Based on a data bank of around 230 measurements collected from the open literature, a correlation for bubble sizes in the homogenous region in bubble columns was derived using Artificial Neural Network (ANN) modeling. The bubble diameter was found to be a function of six parameters: gas velocity, column diameter, diameter of orifice, liquid density, liquid viscosity and liquid surface tension. Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 7.3 % and correlation coefficient of 92.2%. A

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 06 2022
Journal Name
Methods And Objects Of Chemical Analysis
Spectrophotometric Analysis of Quaternary Drug Mixtures using Artificial Neural network model
...Show More Authors

A Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twenty four samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.

Scopus