Preferred Language
Articles
/
YRaNGIcBVTCNdQwCnTZ4
Influence of A River Water Quality on The Efficiency of Water Treatment Using Artificial Neural Network
...Show More Authors

Tigris River is the lifeline that supplies a great part of Iraq with water from north to south. Throughout its entire length, the river is battered by various types of pollutants such as wastewater effluents from municipal, industrial, agricultural activities, and others. Hence, the water quality assessment of the Tigris River is crucial in ensuring that appropriate and adequate measures are taken to save the river from as much pollution as possible. In this study, six water treatment plants (WTPs) situated on the two-banks of the Tigris within Baghdad City were Al Karkh; Sharq Dijla; Al Wathba; Al Karama; Al Doura, and Al Wahda from northern Baghdad to its south, that selected to determine the removal efficiency of turbidity and the water quality index used to assess the quality of water for drinking purposes, in addition to finding the model based on past information to predict the quality of treated wastewater produced in each WTP using an artificial neural network (ANN) approach. The selected parameters for this study were turbidity, total hardness, total solids, suspended solids, and alkalinity. The results showed that all the WTPs possessed a high rate of efficiency in the removal of turbidity from raw water. Also, the results of the water quality index for all WTPs were classified over a study period of three years from 2015 to 2017 as being a good water quality and based on these results, the water treatment plants can be considered to be doing efficient water treatment process. The ANN model has been found at all WTPs to have a coefficient of determination (R2) for expected models was more than 0.7 to provide a WQI prediction tool that can be used with a moderate level of predictive acceptance to describe the suitability of WTP water quality for drinking purposes.

Publication Date
Tue Dec 01 2020
Journal Name
Journal Of Green Engineering
Assessment and modelling of water quality along Al-Gharraf River (Iraq)
...Show More Authors

Scopus (6)
Scopus
Publication Date
Tue Mar 01 2022
Journal Name
Iraqi Journal Of Physics
Effect of Carbon Nanoparticles on the Performance Efficiency of a Solar Water Heater
...Show More Authors

Carbon nanoparticles are prepared by sonication using carbon black powder. The surface morphology of carbon black (CB) and carbon nanoparticles (CNPs) is investigated using scanning electron microscopy (SEM). The particles size ranges from 100 nm to 400 nm for CB and from 10 nm to 100 nm for CNPs. CNPs and CB are mixed with silicon glue of different ratios of 0.025, 0.2, 0.05, and 0.1 to synthesis films. The optical properties of the prepared films are investigated through reflectance and absorbance analyses. The ratio of 0.05 for CNPs and CB is the best for solar paint because of its higher solar water heater efficiency and is then added to the silicon glue . Temperature of cold water and temperature of hot water in storage tank were ta

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Comparison between Linear and Non-linear ANN Models for Predicting Water Quality Parameters at Tigris River
...Show More Authors

In this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Sep 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Development of PVT Correlation for Iraqi Crude Oils Using Artificial Neural Network
...Show More Authors

Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Cutting Force in Turning Process by Using Artificial Neural Network
...Show More Authors

       

Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Tue Oct 30 2018
Journal Name
Https://www.researchgate.net/journal/civil-engineering-journal-2476-3055
Developing Water Quality Index to Assess the Quality of the Drinking Water
...Show More Authors

In the present study, an attempt has been to develop a new water quality index (WQI) method that depends on the Iraqi specifications for drinking water (IQS 417, 2009)  to assess the validity of the Euphrates River for drinking by classifying the quality of the river water at different stations along its entire reach inside the Iraqi lands. The proposed classifications by this method are: Excellent, Good, Acceptable, Poor, and Very poor. Eight water quality parameters have been selected to represent the quality of the river water these are: Ion Hydrogen Concentration (pH), Calcium (Ca), Magnesium (Mg), Sodium (Na), Chloride (Cl), Sulphate (SO_4), Nitrate (NO_3), and Total Dissolved Solids (TDS). The variation of the water quality p

... Show More
Crossref (20)
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Spatial Prediction of Monthly Precipitation in Sulaimani Governorate using Artificial Neural Network Models
...Show More Authors

ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
Fault Location of Doukan-Erbil 132kv Double Transmission Lines Using Artificial Neural Network ANN
...Show More Authors

Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Application of the Canadian Water Quality Index (CCME-WQI) for Aquatic Life to Assess the Effect of Tharthar Water upon the Quality of the Tigris Water, Northern Baghdad City,Iraq
...Show More Authors

The present study aims to assess the effect of the Tharthar Canal as an outlet canal that feeds back from the Tharthar Lake on the quality of the Tigris water. Utilizing a Canadian Water Quality Index (CCME-WQI) for the protection of aquatic life Water samples were obtained every month from January to December of 2020. Six different sites were selected: four along the Tigris River and two on the Tharthar Canal. Seven ecological parameters were used to assess water quality depending on importance and availability: water temperature, Water Temperature, Turbidity, Dissolved Oxygen (DO), Total Dissolved Solids (TDS), pH, Nitrate (NO3-) and Phosphate ( . The study demonstrated that the water quality of the Tharthr canal ranked as a

... Show More
View Publication Preview PDF
Crossref