This study investigated the structural behavior of a beam–slab member fabricated using a steel C-Purlins beam carrying a profile steel sheet slab covered by a dry board sheet filled with recycled aggregate concrete, called a CBPDS member. This concept was developed to reduce the cost and self-weight of the composite beam–slab system; it replaces the hot-rolled steel I-beam with a steel C-Purlins section, which is easier to fabricate and weighs less. For this purpose, six full-scale CBPDS specimens were tested under four-point static bending. This study investigated the effect of using double C-Purlins beams face-to-face as connected or separated sections and the effect of using concrete material that contains different recycled aggregates to replace raw aggregates. Test results confirmed that using double C-Purlins beams with a face-to-face configuration achieved better concrete confinement behavior than a separate configuration did; specifically, a higher bending capacity and ductility index by about +10.7% and +15.7%, respectively. Generally, the overall bending behavior of the tested specimens was not significantly affected when the infill concrete’s raw aggregates were replaced with 50% and 100% recycled aggregates; however, their bending capacities were reduced, at −8.0% and −11.6%, respectively, compared to the control specimen (0% recycled aggregates). Furthermore, a new theoretical model developed during this study to predict the nominal bending strength of the suggested CBPDS member showed acceptable mean value (0.970) and standard deviation (3.6%) compared with the corresponding test results.
This work studied the electrical and thermal surface conductivity enhancement of polymethylmethacrylate (PMMA) clouded by double-walled carbon nanotubes (DWCNTs) and multi-walled carbon nanotube (MWCNTs) by using pulsed Nd:YAG laser. Variable input factors are considered as the laser energy (or the relevant power), pulse duration and pulse repetition rate. Results indicated that the DWCNTs increased the PMMA’s surface electrical conductivity from 10-15 S/m to 0.813×103 S/m while the MWCNTs raised it to 0.14×103 S/m. Hence, the DWCNTs achieved an increase of almost 6 times than that for the MWCNTs. Moreover, the former increased the thermal conductivity of the surface by 8 times and the later by 5 times.
Experimental work was carried out to investigate the effect of fire flame (high temperature) on specimens of one way slabs using Self Compacted Concrete (SCC). By using furnace manufactured for this purpose, twenty one reinforced concrete slab specimens were exposed to direct fire flame. All of specimens have the same dimensions. The slab specimens were cooled in two types, gradually by left them in the air and suddenly by using water. After that the specimens were tested under two point loads, to study, the effect of 
different: temperature levels (300ºC, 500ºC and 700ºC), and cooling rate (gradually and sudden cooling conditions) on the concrete compressive strength, modulus of rupture, flexural strength and the behavior of reinf
In this current work, Purpose; to clearly the fundamental idea for constructing a design and
investigation of spur gear made of composite material its comes from the combination of (high
speeds, low noise, oil-les running, light weight, high strength, and more load capability)
encountered in modern engineering applications of the gear drives, when the usual metallic gear
cannot too overwhelming these combinations.
An analyzing of stresses and deformation under static and dynamic loading for spur gear tooth
by finite element method with isoparametric eight-nodded in total of 200 brick element with 340
nods in three degree of freedom per node was selected for this analysis. This is responsible for the
catastropic fa
Poly aniline-formaldehyde/chitosan composite (PAFC) was prepared by the in situ polymerization method. It was characterized by FTIR spectroscopy in addition to SEM, EDS and TGA techniques. The adsorption kinetics of malachite green dye (MG) on (PAFC) were studied for various initial concentrations (20, 30 and 40) mg/L at three temperatures (308, 313 and 318) K. The influence factors of adsorption; adsorbent dose, contact time, initial concentration and temperature were investigated. The kinetic studies confirmed that adsorption of MG obeyed the pseudo-second-order model and the adsorption can be controlled through external mass transfer followed by intraparticle diffusion mass transfer. A study of th
A particulate polymer composite material was prepared by reinforcing with the Aluminum Oxide (Al2O3) or Aluminum (Al) metallic particles with a particle size of (30) µm to an unsaturated Polyester Resin with a weight fraction of (5%, 10%, 15%, 20%).
Tensile test results showed the maximum value of elastic modulus reached (2400MPa.) in the case of reinforcing with (Al) particles with weight fraction (20%) and (1500 MPa.) in the case of reinforcing with (Al2O3) particles of the same weight fraction.
When the impact and the flexural strength tests were done, the results showed that flexural strength (F.S), maximum shear stress (τmax), impact strength
... Show MorePermeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.
This paper will try to develop the permeability predictive model for one of Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).
Histogram analysis, probability analysis and Log-Log plot of Reservoir Qua
... Show MoreSodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-201
... Show MoreAbstract
A surface fitting model is developed based on calorimeter data for two famous brands of household compressors. Correlation equations of ten coefficient polynomials were found as a function of refrigerant saturating and evaporating temperatures in range of (-35℃ to -10℃) using Matlab software for cooling capacity, power consumption, and refrigerant mass flow rate.
Additional correlations equations for these variables as a quick choice selection for a proper compressor use at ASHRAE standard that cover a range of swept volume range (2.24-11.15) cm3.
The result indicated that these surface fitting models are accurate with in ± 15% for 72 compressors model of cooling cap
... Show MoreBACKGROUND: Preterm labour is a major cause of perinatal morbidity and mortality, so it is important to predict preterm delivery using the clinical examination of the cervix and uterine contraction frequency. New markers for the prediction of preterm birth have been developed such as transvaginal ultrasound measurement of cervical length as this method is widely available. OBJECTIVE: To determine, whether transvaginal cervical length measurement predicts imminent preterm delivery better than digital cervical length measurement in women presented with preterm labour and intact membranes. PATIENTS AND METHODS: Two hundred women presented with preterm labour between 24 and 36+6 weeks of gestation were included in this study. All women subjecte
... Show More 
        