This article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while the other eight deep beams were with openings in shear spans and with carbon fiber–reinforced polymer sheet strengthening around opening zones. The opening size was adopted to be 200 × 200 mm dimensions in eight deep beams, while it was considered to be 230 × 230 mm dimensions in the other eight specimens. In eight specimens the opening was located at the center of the shear span, while in the other eight beams the opening was attached to the interior edge of the shear span. Carbon fiber–reinforced polymer sheets were installed around openings to compensate for the cutout area of concrete. Results gained from the experimental test showed that the creation of openings in shear spans affect the load-carrying capacity, where the reduction of the failure load for specimens with the opening but without strengthening may attain 66% compared to deep beams without openings. On the other hand, the strengthening by carbon fiber–reinforced polymer sheets for beams with openings increased the failure load by 20%–47% compared with the identical deep beam without strengthening. A significant contribution of carbon fiber–reinforced polymer sheets in restricting the deformability of deep beams was observed.
Test results of eight reinforced concrete one way slab with lacing reinforcement are reported. The tests were designed to study the effect of the lacing reinforcement on the flexural behavior of one way slabs. The test parameters were the lacing steel ratio, flexural steel ratio and span to the effective depth ratio. One specimen had no lacing reinforcement and the remaining seven had various percentages of lacing and flexural steel ratios. All specimens were cast with normal density concrete of approximately 30 MPa compressive strength. The specimens were tested under two equal line loads applied statically at a thirds part (four point bending test) up to failure. Three percentage of lacing and flexural steel ratios wer
... Show MoreGranular carbon can be used after conventional filtration of suspended matter or, as a combination of filtration - adsorption medium. The choice of equipment depends on the severity of the organic removal problem, the availability of existing equipment, and the desired improvement of adsorption condition.
Design calculations on dechlorination by granular - carbon filters considering the effects of flow rate, pH , contact time, head loss and bed expansion in backwashing , particle size, and physical characteristics were considered assuming the absence of bacteria or any organic interface .
In this research, the preparation of a chemically activated carbon from date stones by using electric and microwave assisted K2CO3 activation was studied. The effect of radiation power, radiation time, and impregnation ratio on the yield and Iodine number on the activated carbons was investigated. The activated carbon characterizations were examined by its surface area, pore structure analysis, bulk density, moisture content, ash content, iodine number, FTIR, and scanning electron microscopy (SEM). The adsorption capacity was also studied by adsorption of fluoroquinolones antibiotics, CIP, NOR, and LEVO, by the prepared activated carbon.
... Show MoreA New developed technique to estimate the necessary six elastic constants of homogeneous laminate of special orthotropic properties are presented in this paper for the first time. The new approach utilizes the elasto-static deflection behavior of composite cantilever beam employing the famous theory of Timoshenko. Three extracted strips of the composite plate are tested for measuring the bending deflection at two locations. Each strip is associated to a preferred principal axis and the deflection is measured in two orthogonal planes of the beam domain. A total of five trails of testing is accomplished and the numerical results of the stiffness coefficients are evaluated correctly under the contribution of the macromechanic
... Show MoreThe aim of the research is to design educational software based on Web Quests and to measure its effectiveness in developing information search skills of students at the Department of Educational and Psychological Sciences. The research is experimental in nature using pre-post measurement. The research sample consisted of (91) male and female students from the second grade in the Department of Educational and Psychological Sciences, they were divided into two equal groups; the experimental group consisted of (47) students who adopted the educational software as a studying method, and the control group consisted of (44) students who follow the traditional method. The researchers prepared a list of skills for searching information and they
... Show MoreIn this paper, an analytical solution describing the deflection of a cracked beam repaired with piezoelectric patch is introduced. The solution is derived using perturbation method. A novel analytical model to calculate the proper dimensions of piezoelectric patches used to repair cracked beams is also introduced. This model shows that the thickness of the piezoelectric patch depends mainly on the thickness of the cracked beam, the electro-mechanical properties of the patch material, the applied load and the crack location. Furthermore, the model shows that the length of the piezoelectric patches depends on the thickness of the patch as well as it depends on the length of the cracked beam and the crack depth. The additional flexibil
... Show MoreIncorporating waste byproducts into concrete is an innovative and promising way to minimize the environmental impact of waste material while maintaining and/or improving concrete’s mechanical characteristics and strength. The proper application of sawdust as a pozzolan in the building industry remains a significant challenge. Consequently, this study conducted an experimental evaluation of sawdust as a fill material. In particular, sawdust as a fine aggregate in concrete offers a realistic structural and economical possibility for the construction of lightweight structural systems. Failure under four-point loads was investigated for six concrete-filled steel tube (CFST) specimens. The results indicated that recycled lightweight co
... Show MoreIn this paper, an analytical solution describing the deflection of a cracked beam repaired with piezoelectric patch is introduced. The solution is derived using perturbation method. A novel analytical model to calculate the proper dimensions of piezoelectric patches used to repair cracked beams is also introduced. This model shows that the thickness of the piezoelectric patch depends mainly on the thickness of the cracked beam, the electro-mechanical properties of the patch material, the applied load and the crack location. Furthermore, the model shows that the length of the piezoelectric patches depends on the thickness of the patch as well as it depends on the length of the cracked beam and the crack depth. The additio
... Show MoreA theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namely 7-Ethyl-4-methyl-1-[(4-nitro-benzylidene)-amino]-1H-quinolin-2-one (EMNQ2O). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G/ 2d, 2p level was carried out to calculate the geometrical structure, physical properties and chemical inhibition chemical parameters, with the local reactivity in order to predict both the reactive centers and to know the possible sites of nucleophilic and electrophilic attacks, in vacuum and two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in (3.5% NaCl)
... Show More