Preferred Language
Articles
/
YBgnapQBVTCNdQwCpBWF
Exploring the Role of Hunting Cooperation, and Fear in a Prey-Predator Model with Two Age Stages
...Show More Authors

The aim of this study is to utilize the behavior of a mathematical model consisting of three-species with Lotka Volterra functional response with incorporating of fear and hunting cooperation factors with both juvenile and adult predators. The existence of equilibrium points of the system was discussed the conditions with variables. The behavior of model referred by local stability in nearness of any an equilibrium point and the conditions for the method of approximating the solution has been studied locally. We define a suitable Lyapunov function that covers every element of the nonlinear system and illustrate that it works. The effect of the death factor was observed in some periods, leading to non-stability. To confirm the theoretical findings, practical validation was conducted using a numerical simulation implemented in Mathematica software to prove the validity of what has been proven.

Clarivate Crossref
View Publication
Publication Date
Wed Apr 20 2011
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Chaos in a harvested prey-predator model with infectious disease in the prey
...Show More Authors

A harvested prey-predator model with infectious disease in preyis investigated. It is assumed that the predator feeds on the infected prey only according to Holling type-II functional response. The existence, uniqueness and boundedness of the solution of the model are investigated. The local stability analysis of the harvested prey-predator model is carried out. The necessary and sufficient conditions for the persistence of the model are also obtained. Finally, the global dynamics of this model is investigated analytically as well as numerically. It is observed that, the model have different types of dynamical behaviors including chaos.

View Publication Preview PDF
Publication Date
Sat Feb 05 2022
Journal Name
Applied Nanoscience
RETRACTED ARTICLE: The impact of fear on a stage structure prey–predator system with anti-predator behavior
...Show More Authors

A prey-predator interaction model has been suggested in which the population of a predator consists of a two-stage structure. Modified Holling's disk equation is used to describe the consumption of the prey so that it involves the additional source of food for the predator. The fear function is imposed on prey. It is supposed that the prey exhibits anti-predator behavior and may kill the adult predator due to their struggle against predation. The proposed model is investigated for existence, uniqueness, and boundedness. After determining all feasible equilibrium points, the local stability analyses are performed. In addition, global stability analyses for this model using the Lyapunov method are investigated. The chance of occurrence of loc

... Show More
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Oct 15 2022
Journal Name
Communications In Mathematical Biology And Neuroscience
Modeling and analysis of a prey-predator system incorporating fear, predator-dependent refuge, and cannibalism
...Show More Authors

Using a mathematical model to simulate the interaction between prey and predator was suggested and researched. It was believed that the model would entail predator cannibalism and constant refuge in the predator population, while the prey population would experience predation fear and need for a predator-dependent refuge. This study aimed to examine the proposed model's long-term behavior and explore the effects of the model's key parameters. The model's solution was demonstrated to be limited and positive. All potential equilibrium points' existence and stability were tested. When possible, the appropriate Lyapunov function was utilized to demonstrate the equilibrium points' overall stability. The system's persistence requirements were spe

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Clarivate Crossref
Publication Date
Mon Apr 04 2022
Journal Name
Communications In Mathematical Biology And Neuroscience
Stability and bifurcation of a prey-predator system incorporating fear and refuge
...Show More Authors

It is proposed and studied a prey-predator system with a Holling type II functional response that merges predation fear with a predator-dependent prey's refuge. Understanding the impact of fear and refuge on the system's dynamic behavior is one of the objectives. All conceivable steady-states are investigated for their stability. The persistence condition of the system has been established. Local bifurcation analysis is performed in the Sotomayor sense. Extensive numerical simulation with varied parameters was used to explore the system's global dynamics. A limit cycle and a point attractor are the two types of attractors in the system. It's also interesting to note that the system exhibits bi-stability between these 2 types of attractors.

... Show More
View Publication Preview PDF
Scopus (11)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Proceedings Of The 2020 2nd International Conference On Sustainable Manufacturing, Materials And Technologies
The food web prey-predator model with toxin
...Show More Authors

View Publication
Crossref (5)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Communications In Mathematical Biology And Neuroscience
The effect of fear on the dynamics of two competing prey-one predator system involving intra-specific competition
...Show More Authors

View Publication
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Nov 03 2022
Journal Name
Frontiers In Applied Mathematics And Statistics
Prey fear of a specialist predator in a tri-trophic food web can eliminate the superpredator
...Show More Authors

We propose an intraguild predation ecological system consisting of a tri-trophic food web with a fear response for the basal prey and a Lotka–Volterra functional response for predation by both a specialist predator (intraguild prey) and a generalist predator (intraguild predator), which we call the superpredator. We prove the positivity, existence, uniqueness, and boundedness of solutions, determine all equilibrium points, prove global stability, determine local bifurcations, and illustrate our results with numerical simulations. An unexpected outcome of the prey's fear of its specialist predator is the potential eradication of the superpredator.

View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
The Bifurcation Analysis of Food Web Prey- Predator Model with Toxin
...Show More Authors
Abstract<p>Local and global bifurcations of food web model consists of immature and mature preys, first predator, and second predator with the current of toxicity and harvesting was studied. It is shown that a trans-critical bifurcation occurs at the equilibrium point <italic>E</italic> <sub>0</sub>, and it revealed the existence of saddle-node bifurcation occurred at equilibrium points <italic>E</italic> <sub>1</sub>, <italic>E</italic> <sub>2</sub> and <italic>E</italic> <sub>3</sub>. At any point, the occurrence of bifurcation of the pitch for</p> ... Show More
View Publication
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
On The Dynamical Behavior of a Prey-Predator Model With The Effect of Periodic Forcing
...Show More Authors

The dynamical behavior of a two-dimensional continuous time dynamical system describing by a prey predator model is investigated. By means of constructing suitable Lyapunov functional, sufficient condition is derived for the global asymptotic stability of the positive equilibrium of the system. The Hopf bifurcation analysis is carried out. The numerical simulations are used to study the effect of periodic forcing in two different parameters. The results of simulations show that the model under the effects of periodic forcing in two different parameters, with or without phase difference, could exhibit chaotic dynamics for realistic and biologically feasible parametric values.

View Publication Preview PDF
Publication Date
Wed Jun 03 2020
Journal Name
Journal Of Applied Mathematics
Order and Chaos in a Prey-Predator Model Incorporating Refuge, Disease, and Harvesting
...Show More Authors

In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (2)
Scopus Clarivate Crossref