Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two supervised machine learning classification techniques, Learning Vector Quantization (LVQ) and Support Vector Machine (SVM) classifiers, to achieve better search performance and high classification accuracy in a heterogeneous WBASN. These classification techniques are responsible for categorizing each incoming packet into normal, critical, or very critical, depending on the patient's condition, so that any problem affecting him can be addressed promptly. Comparative analyses reveal that LVQ outperforms SVM in terms of accuracy at 91.45% and 80%, respectively.
This study looks into the many methods that are used in the risk assessment procedure that is used in the construction industry nowadays. As a result of the slow adoption of novel assessment methods, professionals frequently resort to strategies that have previously been validated as being successful. When it comes to risk assessment, having a precise analytical tool that uses the cost of risk as a measurement and draws on the knowledge of professionals could potentially assist bridge the gap between theory and practice. This step will examine relevant literature, sort articles according to their published year, and identify domains and qualities. Consequently, the most significant findings have been presented in a manne
... Show MoreProjects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo
Introduction: Since the hallmark of gestational trophoblastic disease is trophoblastic proliferation, Ki67 is regarded as the best marker in studying hydatidiform mole.This study was conducted to evaluate the role of this proliferative marker in distinguishing among hydropic abortion, partial and complete hydatidiform mole. Materials and methods: This is a cross sectional study involving the application of Ki67 on a total of 90 histological samples of curetting materials from molar (partial and complete mole) and non molar hydropic abortion belong to Iraqi females, so three study groups were created. Immunohistochemical expression in villous cytotrophoblasts, syncytiotrophoblasts and stromal cells were recorded separately by three i
... Show MoreThe study aimed to reach the best rating for the views and variables in the totals characterized by qualities and characteristics common within each group and distinguish them from aggregates other for the purpose of distinguishing between Iraqi provinces which suffer from deprivation, for the purpose of identifying the status of those provinces in the early allowing interested parties and regulators to intervene to take appropriate corrective action in a timely manner. Style has been used cluster analysis Cluster analysis to reach the best rating to those totals from the provinces that suffer from problems, where the provinces were classified, based on the variables (Edu
... Show MoreA study of taxonomic quality of soil algae was conducted with some environmental variables in three sites of local gardens (Kadhimiya, Adhamiya and Dora) within the governorate of Baghdad for the period from October 2016 to March 2017. The study identified 28 species belonging to 16 species in which the predominance of blue green algae (18 species) Followed by Bacillarophyta algae (7 species) and three types of Chlorophyta. The study showed an increase in species of Oscillatoria. The results showed no significant differences between sites in temperature, pH and relative humidity, while there were clear differences between sites for salinity and nutrient The study showed a difference of irrigation water quality and use of different fertilize
... Show MoreThe tight gas is one of the main types of the unconventional gas. Typically the tight gas reservoirs consist of highly heterogeneous low permeability reservoir. The economic evaluation for the production from tight gas production is very challenging task because of prevailing uncertainties associated with key reservoir properties, such as porosity, permeability as well as drainage boundary. However one of the important parameters requiring in this economic evaluation is the equivalent drainage area of the well, which relates the actual volume of fluids (e.g gas) produced or withdrawn from the reservoir at a certain moment that changes with time. It is difficult to predict this equival
ABSTRACT
The simulation of groundwater movement has been carried out by using MODFLOW model
in order to show the impact of change of water surface elevation of the Tigris river on layers of
the aquifer system for Nuclear Research Center at Al-Tuwaitha area, in addition to evaluate the
ability of the proposed pumping well to collect groundwater and change the direction of flow at
steady-state. The results of the study indicated that there is a good match between the values of
groundwater levels that calculated in the model and measured in the field, where mean error is
0.09 m.
The study also showed that the increasing of water surface elevation of the
This work deals with the reporting of four helminthes in the rook partridge Alectoris graeca collected in G'ara area west of Iraq. The infection rates of the cestodes, Raillietina alectori and R. tetragona and the nematode. Hartertia gallinarum, and the trematode. Postharmostomum gallinum were 6.38%, 40.43%, 10.63%, and 10.63% respectively. The host relationships were discussed.