Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two supervised machine learning classification techniques, Learning Vector Quantization (LVQ) and Support Vector Machine (SVM) classifiers, to achieve better search performance and high classification accuracy in a heterogeneous WBASN. These classification techniques are responsible for categorizing each incoming packet into normal, critical, or very critical, depending on the patient's condition, so that any problem affecting him can be addressed promptly. Comparative analyses reveal that LVQ outperforms SVM in terms of accuracy at 91.45% and 80%, respectively.
The introduction to the research included a presentation of some physical characteristics and their importance in sports, including the speed of kinesthetic response response and the extent of its usefulness and importance, especially for soccer goalkeepers, as it is the most important element that goalkeepers must have, and it is also the main key to the excellence and development of all physical and kinesthetic response qualities and skills of a goalkeeper. Football. The speed of kinesthetic response response and reaction is one of the requirements of the game of football, as well as all other sports and even in general professional life. Its importance is highlighted for the football goalkeeper, so he must master it perfectly to perform
... Show MoreThis paper describes a newly modified wind turbine ventilator that can achieve highly efficient ventilation. The new modification on the conventional wind turbine ventilator system may be achieved by adding a Savonius wind turbine above the conventional turbine to make it work more efficiently and help spinning faster. Three models of the Savonius wind turbine with 2, 3, and 4 blades' semicircular arcs are proposed to be placed above the conventional turbine of wind ventilator to build a hybrid ventilation turbine. A prototype of room model has been constructed and the hybrid turbine is placed on the head of the room roof. Performance's tests for the hybrid turbine with a different number of blades and different values o
... Show MoreBackground: Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder globally. The prevalence is 25% worldwide, distributed widely in different populations and regions. The highest rates are reported for the Middle East (32%). Due to modern lifestyles and diet, there has been a persistent increase in the number of NAFLD patients. This increase occurred at the same time where there were also increases in the number of people considered being obese all over the world. By analyzing fatty liver risk factors, studies found that body mass index, one of the most classical epidemiological indexes assessing obesity, was associated with the risk of fatty liver.
Objectives: To assess age, sex, and body
... Show MoreThis study focusses on the effect of using ICA transform on the classification accuracy of satellite images using the maximum likelihood classifier. The study area represents an agricultural area north of the capital Baghdad - Iraq, as it was captured by the Landsat 8 satellite on 12 January 2021, where the bands of the OLI sensor were used. A field visit was made to a variety of classes that represent the landcover of the study area and the geographical location of these classes was recorded. Gaussian, Kurtosis, and LogCosh kernels were used to perform the ICA transform of the OLI Landsat 8 image. Different training sets were made for each of the ICA and Landsat 8 images separately that used in the classification phase, and used to calcula
... Show MoreCoronavirus is considered the first virus to sweep the world in the twenty-first century, it appeared by the end of 2019. It started in the Chinese city of Wuhan and began to spread in different regions around the world too quickly and uncontrollable due to the lack of medical examinations and their inefficiency. So, the process of detecting the disease needs an accurate and quickly detection techniques and tools. The X-Ray images are good and quick in diagnosing the disease, but an automatic and accurate diagnosis is needed. Therefore, this paper presents an automated methodology based on deep learning in diagnosing COVID-19. In this paper, the proposed system is using a convolutional neural network, which is considered one o
... Show MoreIn real world, almost all networks evolve over time. For example, in networks of friendships and acquaintances, people continually create and delete friendship relationship connections over time, thereby add and draw friends, and some people become part of new social networks or leave their networks, changing the nodes in the network. Recently, tracking communities encountering topological shifting drawn significant attentions and many successive algorithms have been proposed to model the problem. In general, evolutionary clustering can be defined as clustering data over time wherein two concepts: snapshot quality and temporal smoothness should be considered. Snapshot quality means that the clusters should be as precise as possible durin
... Show MoreThe increase in cloud computing services and the large-scale construction of data centers led to excessive power consumption. Datacenters contain a large number of servers where the major power consumption takes place. An efficient virtual machine placement algorithm is substantial to attain energy consumption minimization and improve resource utilization through reducing the number of operating servers. In this paper, an enhanced discrete particle swarm optimization (EDPSO) is proposed. The enhancement of the discrete PSO algorithm is achieved through modifying the velocity update equation to bound the resultant particles and ensuring feasibility. Furthermore, EDPSO is assisted by two heuristic algorithms random first fit (RFF) a
... Show MoreSkull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no
... Show More