Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two supervised machine learning classification techniques, Learning Vector Quantization (LVQ) and Support Vector Machine (SVM) classifiers, to achieve better search performance and high classification accuracy in a heterogeneous WBASN. These classification techniques are responsible for categorizing each incoming packet into normal, critical, or very critical, depending on the patient's condition, so that any problem affecting him can be addressed promptly. Comparative analyses reveal that LVQ outperforms SVM in terms of accuracy at 91.45% and 80%, respectively.
Abstract
The use of electronic valves is commonly available. yet, the most
common is the techniques of communications as prod casting transmitter that
are used by these valves in addition to their use in communication tools as far
distance telephone, electronic measuring techniques , and others.
In this study, an attempt is endeavored for improving the efficiency of the
vacuum micro- valves(GI-19b) through activating their internal surfaces by the
use of ionic pumping which is used for treating valves which are out of order
(because of sedimentation some materials and oxide on its poles). The
existence of these materials and oxide increase the sum of current leakage
moving in between. The use of ionic pumpin
A Geographic Information System (GIS) is a computerized database management system for accumulating, storage, retrieval, analysis, and display spatial data. In general, GIS contains two broad categories of information, geo-referenced spatial data and attribute data. Geo-referenced spatial data define objects that have an orientation and relationship in two or three-dimensional space, while attribute data is qualitative data that can be counted for recording and analysis. The main aim of this research is to reveal the role of GIS technology in the enhancement of bridge maintenance management system components such as the output results, and make it more interpretable through dynamic colour coding and more sophisticated visualization
... Show MoreThis research deals with the fact that arts exit from their familiar context in practice and enter in the context of the fantasy and exoticism picture. In order to understand the theatrical phenomenon and know the way of its production of the fantasy picture, especially the acting performance in its transitions between the real and fantasy. This study consists of: an introduction of the research in which the researcher presented the research problem, importance and objectives.
The theoretical framework dealt with founding a theoretical part for the research consisting of two sections: the first (fantasy: the concept and the working) and the second (techniques of acting perfo
... Show MoreThe postmodern ideas and concepts have produced social, political and economic variables that have been affected by wars, crises, the role of globalization and the information revolution. They have created many variables in concepts and great variables in technological, artistic and cultural innovations. All these changes have contributed to changing the form of the theatrical show aesthetically and intellectually, which cast a shadow over the nature of the actor's performance who has become more demanding to change his performance and to find the mechanisms and new nature of work governing him corresponding to those variables and this prompted the researcher to adopt the subject (the performance variable of the actor's techniques in pos
... Show MoreMetasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show MoreThe aim of the current research is to reveal the effect of using brain-based learning theory strategies on the achievement of Art Education students in the subject of Teaching Methods. The experimental design with two equal experimental and control groups was used. The experimental design with two independent and equal groups was used, and the total of the research sample was (60) male and female students, (30) male and female students represented the experimental group, and (30) male and female students represented the control group. The researcher prepared the research tool represented by the cognitive achievement test consisting of (20) questions, and it was characterized by honesty and reliability, and the experiment lasted (6) weeks
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show More