Preferred Language
Articles
/
YBg-fpQBVTCNdQwCeBvC
Improving Performance Classification in Wireless Body Area Sensor Networks Based on Machine Learning Techniques
...Show More Authors

Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two supervised machine learning classification techniques, Learning Vector Quantization (LVQ) and Support Vector Machine (SVM) classifiers, to achieve better search performance and high classification accuracy in a heterogeneous WBASN. These classification techniques are responsible for categorizing each incoming packet into normal, critical, or very critical, depending on the patient's condition, so that any problem affecting him can be addressed promptly. Comparative analyses reveal that LVQ outperforms SVM in terms of accuracy at 91.45% and 80%, respectively.

Scopus Crossref
View Publication
Publication Date
Mon Feb 13 2023
Journal Name
Journal Of Educational And Psychological Researches
A Blended Learning Program Based on the Next Generation Standards (NYS) to Develop the Teaching Performance of Middle School Mathematics Teachers and Some Students’ Future Thinking Skills
...Show More Authors

Abstract

The aim of the current research is to prepare an integrated learning program based on mathematics standards for the next generation of the NYS and to investigate its impact on the development of the teaching performance of middle school mathematics teachers and the future thinking skills of their students. To achieve the objectives of the research, the researcher prepared a list of mathematics standards for the next generation, which were derived from a list of standards. He also prepared a list of the teaching competencies required for middle school mathematics teachers in light of the list of standards, as well as clarified the foundations of the training program and its objectives and the mathematical

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
SDN-RA: An Optimized Reschedule Algorithm of SDN Load Balancer for Data Center Networks Based on QoS
...Show More Authors
Abstract<p>With the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch</p> ... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Mon Nov 11 2019
Journal Name
Day 3 Wed, November 13, 2019
Drill Bit Selection Optimization Based on Rate of Penetration: Application of Artificial Neural Networks and Genetic Algorithms
...Show More Authors
Abstract<p>The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the</p> ... Show More
View Publication
Crossref (9)
Crossref
Publication Date
Sun Mar 31 2024
Journal Name
Iraqi Geological Journal
Permeability Prediction and Facies Distribution for Yamama Reservoir in Faihaa Oil Field: Role of Machine Learning and Cluster Analysis Approach
...Show More Authors

Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Wed Jul 06 2022
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Pixel Based Techniques for Gray Image Compression: A review
...Show More Authors

Currently, with the huge increase in modern communication and network applications, the speed of transformation and storing data in compact forms are pressing issues. Daily an enormous amount of images are stored and shared among people every moment, especially in the social media realm, but unfortunately, even with these marvelous applications, the limited size of sent data is still the main restriction's, where essentially all these applications utilized the well-known Joint Photographic Experts Group (JPEG) standard techniques, in the same way, the need for construction of universally accepted standard compression systems urgently required to play a key role in the immense revolution. This review is concerned with Different

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
The effect of organizational learning dimensions on availability of learning organization dimensions in Iraqi planning ministry
...Show More Authors

The aim of this research to study.

The dimensions of organizational learning have been defined(learning dynamics, individuals empowerment, knowledge management and technology application) as well as the dimensions of learning organization have been defined (culture values, knowledge transfer, communication and employee characteristics), Asset completion questionnaire was used to collect data of this research from a purposely sample represent forty employees who works in Iraqi Planning Ministry at different positions. The research divided to four parts :

The first to the research methodology, the second to the theoretical review o

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue May 21 2019
Journal Name
The Journal Of Engineering
Performance of a tubular machine driven by an external‐combustion free‐piston engine
...Show More Authors

Crossref (2)
Clarivate Crossref
Publication Date
Mon Dec 25 2023
Journal Name
Ieee Access
ITor-SDN: Intelligent Tor Networks-Based SDN for Data Forwarding Management
...Show More Authors

Tor (The Onion Routing) network was designed to enable users to browse the Internet anonymously. It is known for its anonymity and privacy security feature against many agents who desire to observe the area of users or chase users’ browsing conventions. This anonymity stems from the encryption and decryption of Tor traffic. That is, the client’s traffic should be subject to encryption and decryption before the sending and receiving process, which leads to delay and even interruption in data flow. The exchange of cryptographic keys between network devices plays a pivotal and critical role in facilitating secure communication and ensuring the integrity of cryptographic procedures. This essential process is time-consuming, which causes del

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Apr 03 2023
Journal Name
Journal Of Educational And Psychological Researches
The Effectiveness of a Training Program Based on Connectivism Theory in Developing E-Learning Competencies among Teachers of Islamic Education in Dhofar Governorate
...Show More Authors

Abstract

The study aims to build a training program based on the Connectivism Theory to develop e-learning competencies for Islamic education teachers in the Governorate of Dhofar, as well as to identify its effectiveness. The study sample consisted of (30) Islamic education teachers to implement the training program, they were randomly selected. The study used the descriptive approach to determine the electronic competencies and build the training program, and the quasi-experimental approach to determine the effectiveness of the program. The study tools were the cognitive achievement test and the observation card, which were applied before and after. The study found that the effectiveness of the training program

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Simplified Novel Approach for Accurate Employee Churn Categorization using MCDM, De-Pareto Principle Approach, and Machine Learning
...Show More Authors

Churning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date.  A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref