Wireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two supervised machine learning classification techniques, Learning Vector Quantization (LVQ) and Support Vector Machine (SVM) classifiers, to achieve better search performance and high classification accuracy in a heterogeneous WBASN. These classification techniques are responsible for categorizing each incoming packet into normal, critical, or very critical, depending on the patient's condition, so that any problem affecting him can be addressed promptly. Comparative analyses reveal that LVQ outperforms SVM in terms of accuracy at 91.45% and 80%, respectively.
This study deals with examining UCAS students’ attitudes in Gaza towards learning Arabic grammar online during the Corona pandemic. The researcher has adopted a descriptive approach and used a questionnaire as a tool for data collection. The results of the study have statistically shown significant differences at the level of "0.01" between the average scores of students in favor of the students of the humanities specializations. It has also been found that the students’ attitudes at the Department of Humanities and Media towards learning Arabic grammar online are positive. Additionally, the results revealed no statistical significant differences due to the variable of UCAS students’ scientific qualifications. The results stressed
... Show MoreIn this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe
... Show MoreThis study examines the position of comparative legislation (French legislation, English legislation, and Egyptian legislation) in addressing the regulation of personal civil liability (based on fault) for the government. About the damages caused by demonstrations in terms of their legal nature, their legal basis, and the pillars and conditions of that responsibility. Then, we explain the position of the Iraqi legislator and compare it with what is the case in the legislation mentioned above
Abstract
This study aims to identify the extent to which the criteria of the American Council for Teaching Foreign Languages (ACTFL) are included in the English language books for the fifth and sixth graders. To achieve the objective of the study, a content analysis card was prepared, where the classification of language proficiencies was divided into five main levels (beginner, intermediate, advanced, superior, and distinguished) of the four language skills (listening, speaking, reading, and writing), The content analysis card consisted of (89) indicators distributed at the four levels of language skills as follows: Listening (17), speaking (33), reading (15), and writing (26). The study sample consisted of Engl
... Show MoreIn this paper, the system of the power plant has been investigated as a special type of industrial systems, which has a significant role in improving societies since the electrical energy has entered all kinds of industries, and it is considered as the artery of modern life.
The aim of this research is to construct a programming system, which could be used to identify the most important failure modes that are occur in a steam type of power plants. Also the effects and reasons of each failure mode could be analyzed through the usage of this programming system reaching to the basic events (main reasons) that causing each failure mode. The construction of this system for FMEA is dependi
... Show More