The flexible joint robot manipulators provide various benefits, but also present many control challenges such as nonlinearities, strong coupling, vibration, etc. This paper proposes optimal second order integral sliding mode control (OSOISMC) for a single link flexible joint manipulator to achieve robust and smooth performance. Firstly, the integral sliding mode control is designed, which consists of a linear quadratic regulator (LQR) as a nominal control, and switching control. This control guarantees the system robustness for the entire process. Then, a nonsingularterminal sliding surface is added to give a second order integral sliding mode control (SOISMC), which reduces chartering effect and gives the finite time convergence as well. Simulation results show superiority of the proposed algorithm over LQR and ISMC in terms of tracking performance and chattering mitigation.
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
This paper presents the motion programming and control of omni-directional mobile robot through the process of building and programming a small robotic platform with secondary design criteria of modularity and simplified control. This is accomplished by combining the positive aspects of several different robotics platform ideas. The platform is shaped like an equilateral triangle with a servo motor, sensors, and omni-wheel, controlled by a PIC microcontroller.
In this work the kinematics, inverse kinematics and dynamic module for the platform is derived. Two search algorithms (the wall-following search and the “most-open-area” search) is designed, tested, and analyzed experimentally.
In this paper, a discretization of a three-dimensional fractional-order prey-predator model has been investigated with Holling type III functional response. All its fixed points are determined; also, their local stability is investigated. We extend the discretized system to an optimal control problem to get the optimal harvesting amount. For this, the discrete-time Pontryagin’s maximum principle is used. Finally, numerical simulation results are given to confirm the theoretical outputs as well as to solve the optimality problem.
In this research, some probability characteristics functions (probability density, characteristic, correlation and spectral density) are derived depending upon the smallest variance of the exact solution of supposing stochastic non-linear Fredholm integral equation of the second kind found by Adomian decomposition method (A.D.M)
In this paper, we use the repeated corrected Simpson's 3/8 quadrature method for obtaining the numerical solutions of Fredholm linear integral equations of the second kind. This method is more accurately than the repeated corrected Trapezoidal method and the repeated Simpson's 3/8 method. To illustrate the accuracy of this method, we give a numerical example
in this paper the second order neutral differential equations are incestigated are were we give some new suffucient conditions for all nonoscillatory
In this paper, our purpose is to study the classical continuous optimal control (CCOC) for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.
In this paper the Galerkin method is used to prove the existence and uniqueness theorem for the solution of the state vector of the triple linear elliptic partial differential equations for fixed continuous classical optimal control vector. Also, the existence theorem of a continuous classical optimal control vector related with the triple linear equations of elliptic types is proved. The existence of a unique solution for the triple adjoint equations related with the considered triple of the state equations is studied. The Fréchet derivative of the cost function is derived. Finally the theorem of necessary conditions for optimality of the considered problem is proved.
In this article, we investigate a mathematical fractional model of tuberculosis that takes into account vaccination as a possible way to treat the disease. We use an in-host tuberculosis fractional model that shows how Macrophages and Mycobacterium tuberculosis interact to knowledge of how vaccination treatments affect macrophages that have not been infected. The existence of optimal control is proven. The Hamiltonian function and the maximum principle of the Pontryagin are used to describe the optimal control. In addition, we use the theory of optimal control to develop an algorithm that leads to choosing the best vaccination plan. The best numerical solutions have been discovered using the forward and backward fractional Euler
... Show MoreThe aim of this paper is to study the quaternary classical continuous optimal control for a quaternary linear parabolic boundary value problems(QLPBVPs). The existence and uniqueness theorem of the continuous quaternary state vector solution for the weak form of the QLPBVPs with given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method. In addition, the existence theorem of a quaternary classical continuous optimal control vector governinig by the QLPBVPs is stated and demonstrated. The Fréchet derivative for the cost function is derived. Finally, the necessary conditions for the optimality theorem of the proposed problem is stated and demonstrated.