The flexible joint robot manipulators provide various benefits, but also present many control challenges such as nonlinearities, strong coupling, vibration, etc. This paper proposes optimal second order integral sliding mode control (OSOISMC) for a single link flexible joint manipulator to achieve robust and smooth performance. Firstly, the integral sliding mode control is designed, which consists of a linear quadratic regulator (LQR) as a nominal control, and switching control. This control guarantees the system robustness for the entire process. Then, a nonsingularterminal sliding surface is added to give a second order integral sliding mode control (SOISMC), which reduces chartering effect and gives the finite time convergence as well. Simulation results show superiority of the proposed algorithm over LQR and ISMC in terms of tracking performance and chattering mitigation.
The present work has been characterized by higher order modes in the cavities of the Gyrotron; they are capable of producing RF plasma by developments of it. It uses for fusion systems. We choose the TE31,8 mode in our study. The main problem of gyrotron is the device of the thermal cavity loading. The problem of the thermal loading is solved when any parasitic modes suppress, absence of desired modes; the thermal loading is increased when the high power tube of gyrotron operation is unstable. The mathematical interaction model contains equations that describe the electron motion and the field profiles of the transferred electric modes of the resonator, these are interacting with electrons based
... Show MoreEDIRKTO, an Implicit Type Runge-Kutta Method of Diagonally Embedded pairs, is a novel approach presented in the paper that may be used to solve 4th-order ordinary differential equations of the form . There are two pairs of EDIRKTO, with three stages each: EDIRKTO4(3) and EDIRKTO5(4). The derivation techniques of the method indicate that the higher-order pair is more accurate, while the lower-order pair provides superior error estimates. Next, using these pairs as a basis, we developed variable step codes and applied them to a series of -order ODE problems. The numerical outcomes demonstrated how much more effective their approach is in reducing the quantity of function evaluations needed to resolve fourth-order ODE issues.
The concern of this article is the calculation of an upper bound of second Hankel determinant for the subclasses of functions defined by Al-Oboudi differential operator in the unit disc. To study special cases of the results of this article, we give particular values to the parameters A, B and λ
In this paper, the oscillatory properties and asymptotic behaviour of a third-order three-dimensional neutral system are discussed. Some sufficient conditions are obtained to ensure that all bounded positive solutions of the system are oscillatory or non-oscillatory. On the other hand, the non-oscillatory solutions either converge or diverge when goes to infinity. A special technique is adopted to include all possible cases. The obtained results include illustrative examples.
Traffic loading and environmental factors are among the most serious variables that cause the spoilage of flexible pavements and lead to a decrease in their design life. The objective of this study is to investigate the influence of axle load raise and the change in resilient modulus on the flexible pavement design life. Locally, Highway geometric design code for Iraqi building code has assign certain admissible maximum load limits per every axle truck type that should not be overrun. In this paper nine different axle truck loads (8, 9, 10, 11, 12, 13, 14, 15, and 16) tons, single axle with dual tire and, and two different resilient moduli of asphalt pavement were chosen. The evaluation was carried out assuming high temperature to represent
... Show MoreThe goal of this paper is to construct an arcs of size five and six with stabilizer groups of type alternating group of degree five and degree six . Also construct an arc of degree five and size with its stabilizer group, and then study the effect of and on the points of projective plane. Also, find a pentastigm which has the points on a line. Partitions on projective plane of order sixteen into subplanes and arcs have been described.
The main aims purpose of this study is to find the stabilizer groups of a cubic curves over a finite field of order 16, also studying the properties of their groups, and then constructing all different cubic curves, and known which one of them is complete or not. The arcs of degree 2 which are embedding into a cubic curves of even size have been constructed.
In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect
... Show More