In this research, an analysis for the standard Hueckel edge detection algorithm behaviour by using three dimensional representations for the edge goodness criterion is presents after applying it on a real high texture satellite image, where the edge goodness criterion is analysis statistically. The Hueckel edge detection algorithm showed a forward exponential relationship between the execution time with the used disk radius. Hueckel restrictions that mentioned in his papers are adopted in this research. A discussion for the resultant edge shape and malformation is presented, since this is the first practical study of applying Hueckel edge detection algorithm on a real high texture image containing ramp edges (satellite image).
Tin oxide was deposited by using vacuum thermal method on silicon wafer engraved by Computer Numerical Controlled (CNC) Machine. The inscription was engraved by diamond-made brine. Deep 0.05 mm in the form of concentric squares. Electrical results in the dark were shown high value of forward current and the high value of the detection factor from 6.42 before engraving to 10.41 after engraving. (I-V) characters in illumination with powers (50, 100, 150, 200, 250) mW/cm2 show Improved properties of the detector, Especially at power (150, 200, 250) mW/cm2. Response improved in rise time from 2.4 μs to 0.72 μs and time of inactivity improved 515.2 μs to 44.2 μs. Sensitivity angle increased at zone from 40o to 65o.
Bilinear interpolation and use of perceptual color spaces (HSL, HSV, LAB, and LUV) fusion techniques are presented to improve spatial and spectral characteristics of the multispectral image that has a low resolution to match the high spatial resolution of a panchromatic image for different satellites image data (Orbview-3 and Landsat-7) for the same region. The Signal-to-Noise Ratio (SNR) fidelity criterion for achromatic information has been calculated, as well as the mean color-shifting parameters that computed the ratio of chromatic information loss of the RGB compound inside each pixel to evaluate the quality of the fused images. The results showed the superiority of HSL color space to fuse images over the rest of the spac
... Show MoreThe aim of this research is to determine the uranium concentration in soil and water samples taken from different locations from the middle and south of Iraq using fission fragments track registration. Twelve samples of soil and water were taken from middle and South of Iraq. The nuclear reaction used as a source of nuclear fission fragments is U-235 (n.f) obtained by bombardment U-235with thermal neutrons from (Am-Be) neutron source with flux (5X103 n.cm-2.s-1). The concentration values were calculated by a comparison with standard samples recommended by IAEA.The results of the measurements show that the uranium concentration in soil samples were in Thekar (16.38 ppm), AL-Basra (16.1ppm) and (0.78 ppm) in Baghdad, from the results
... Show MoreThe recognition of handwritten numerals has many applications in automatic identification and cognition. This research contains three experimented scenarios to recognize the handwritten English (i.e. Arabic) numerals. In the first scenario the bilinear interpolation of the image is used, while in the second scenario and after the bilinear interpolation is being applied, the Sobel operators are applied on the resulted interpolated image. In the third scenario which represents the last one, the effect of normalization of image dimensions is tested. 550 images of handwritten numerals were tested. Three types of tests were conducted for each scenario namely: trained-set test, not-trained-set test and comprehensive-set test. Depending on the
... Show MoreTwo unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
The wavelet transform has become a useful computational tool for a variety of signal and image processing applications.
The aim of this paper is to present the comparative study of various wavelet filters. Eleven different wavelet filters (Haar, Mallat, Symlets, Integer, Conflict, Daubechi 1, Daubechi 2, Daubechi 4, Daubechi 7, Daubechi 12 and Daubechi 20) are used to compress seven true color images of 256x256 as a samples. Image quality, parameters such as peak signal-to-noise ratio (PSNR), normalized mean square error have been used to evaluate the performance of wavelet filters.
In our work PSNR is used as a measure of accuracy performanc
... Show MoreIn this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.