Frequently, Load associated mode of failure (rutting and fatigue) as well as, occasionally, moisture damage in some sections poorly drained are the main failure types found in some of the newly constructed road within Baghdad as well as other cities in Iraq. The use of hydrated lime in pavement construction could be one of the possible steps taken in the direction of improving pavement performance and meeting the required standards. In this study, the mechanistic properties of asphalt concrete mixes modified with hydrated lime as a partial replacement of limestone dust mineral filler were evaluated. Seven replacement rates were used; 0, 0.5, 1, 1.5, 2, 2.5 and 3 percent by weight of aggregate. Asphalt concrete mixes were prepared at their optimum asphalt content and then tested to evaluate their engineering properties which include moisture damage, resilient modulus, permanent deformation and fatigue characteristics. These properties have been evaluated using indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Mixes modified with hydrated lime were found to have improved fatigue and permanent deformation characteristics, also showed lower moisture susceptibility and high resilient modulus. The use of 2 percent hydrated lime as a partial replacement of mineral filler has added to local knowledge the ability to produce more durable asphalt concrete mixtures with better serviceability.
Asphalt pavement properties in Iraq are highly affected by elevated summer air temperatures. One of these properties is stiffness (resilient modulus). To explain the effect of air temperatures on stiffness of asphalt concrete, it is necessary to determine the distribution of temperatures through the pavement asphalt concrete layers. In this study, the distribution of pavement temperatures at three depths (2cm,7cm, 10cm) below the pavement surface is determined by using the temperature data logger instrument. A relationship for determining pavement temperature as related to depth and air temperature has been suggested. To achieve the objective of this thesis, the prepared specimens have been tested for indirect tension in accordance with
... Show MoreThe impact of exposure to different sizes of particulate matter (PM1, PM2.5, PM7, and PM10) was evaluated in Babylon concrete plant workers who had been exposed to concrete dust for at least 10 years. The effects of these particles on the hematological parameters, malondialdehyde (MDA) levels, and antioxidant enzymes (catalase and glutathione peroxidase ) were examined. The results exhibited that the levels of PM2.5 and PM10 were higher than the acceptable limits approved by the National Ambient Air Quality Standards (NAAQS). The blood parameters, namely white blood cells (WBC), red blood cell (RBC) and platelets counts, demonstrated non-significant differences between workers exposed to the PM as compared to the control gro
... Show MoreOne-third of the total waste generated in the world is construction and demolition waste. Reducing the life cycle of building materials includes increasing their recycling and reuse by using recycled aggregates. By preventing, the need to open new aggregate quarries and reducing the amount of construction waste dumped into landfills, the use of recycled concrete aggregate in drum compacted concrete protects the environment. Four samples of PRCC were prepared for testing (compressive strength, tensile strength, flexural strength, density, water absorption, porosity) as the reference mix and (10, 15, and 20%) of fine recycled concrete aggregate as a partial replacement for fine natural aggregate by volume. The mix is designed according to
... Show MoreAssessment of the in service behavior of asphalt stabilized subgrade soil under environmental impact has got little attention by the research workers. However, the sustainability of the roadway depends mainly on the welfare of its subgrade soil condition. In this work, Gypseous soil was stabilized with asphalt emulsion for subgrade usage, the durability of the mixture has been assessed in term of its ability to maintain the compressive strength when practicing the environmental impacts. Specimens of 38 mm in diameter , and 76 mm in height have been prepared with various water-asphalt percentages, and subjected to 30 cycles of (freezing-thawing), (heating-cooling) and (wetting-drying) processes. Specimens have been tested for unconfined comp
... Show MoreEquilrium, kinetic and mechanistic studies for thcoordination of
|
some amino acids "'AA'1
glycine, alanine, .a:ncl histidine, to Cr (Ill)
center of trans .[Cr(ox}2(B.2 0hr {TJ'} cornplein monderarely acidic
range ofpH=4.8-6-.7 ( p =Q.4M NaN03) are reported. The equili rium
c.onsta:nts at 25°C .were found logKequ.=4.95J ,5.206and5.128for glycine, alap.ine, md
... Show MoreDuring the last two decades, nanomaterial application has gained a significant attraction into asphalt technology due to their effect in enhancing asphalt binder improving the asphaltic mixture. This study will modify the asphalt binder with two different nano types, nano SiO2 and CaCO3, at levels ranging from 1% to 7%. The resulting optimum nano-modified Asphalt will be subject to a series of rheological tests, including dynamic shear rheometer (DSR), Viscosity, and bending beam rheometer (BBR) to determine asphalt binder sensitivity towards low-medium-high temperature range. Results indicate that both nano types improved the physical characteristics of Asphalt, and 5% by weight of Asphalt was suggested as a reasonable dosage of nano-SiO2
... Show More