Under cyclic loading, aluminum alloys exhibit less fatigue life than steel alloys of similar strength and this is considered as Achilles's heel of such alloys. A nanosecond fiber laser was used to apply high speed laser shock peening process on thin aluminum plates in order to enhance the fatigue life by introducing compressive residual stresses. The effect of three working parameters namely the pulse repetition rate (PRR), spot size (ω) and scanning speed (v) on limiting the fatigue failure was investigated. The optimum results, represented by the longer fatigue life, were at PRR of 22.5 kHz, ω of 0.04 mm and at both v's of 200 and 500 mm/sec. The research yielded significant results represented by a maximum percentage increase in the fatigue life of 505.25% accompanied by the least deformation for the processed surfaces. SEM images for the specimens processed by the optimum process conditions imply no ablation has occurred at the surface, and the process is completely cold. X-ray diffraction analysis indicates a reduction in grains size, an increase of 28.56% in the lengths of dislocations and formation of effective compressive residual stress at the surface and beneath reaches to 700 μm.
It is necessary to use the means of recovery and other means that help to get rid of the effects of fatigue, as the game of badminton and the effectiveness of running 800 meters fall within the mixed system with the superiority of the anaerobic system by more than the air system, so requires the development of energy systems In proportion to the time of the match for badminton players and their travels and high performance and ability to tolerate the high level of lactic acid in the muscles and blood and increase the pain associated with the fatigue that occurs during the performance. In light of the physical and physiological processes of these actions N it should seek through training programs to develop your endurance and wind energy sys
... Show MoreNanostructured photodetectors have garnered great attention due to their enriched electronic and optical properties. In this work, we aim to fabricate a high-performance CeO2/Si photodetector by growing a CeO2 nanostructure film on a silicon substrate using the pulsed laser deposition (PLD) technique at different laser energy densities. The impact of laser energy density and the number of pulses on the morphological, optical, and electrical properties was studied. Field emission scanning electron microscopy (FESEM) results show that the CeO2 film has a spherical grain morphology with an average grain size ranging from 33 to 54 nm, depending on the laser energy density. The film deposited at various numbers of laser pulses also has spherical
... Show MoreRecently, that there has been a decline in the levels of female players for this event in recent years compared to developments in the world, as this activity depends to achieve the highest level of performance on the physical capabilities and physiological indicators of the player who It is reflected in the achievement, which results in the loss of time for Iraqi female runners compared to the world champions in the (100) meter hurdles competition, which reflects on the level of achievement. The two researchers used the experimental approach in addressing the research problem, and the experimental design used the method of the two equal groups, the two experiments with the pre and post-tests. Female runner and second experimental group (4)
... Show MoreRandom laser gain media is synthesized with different types of dye at the same concentration (1×10-3 M) as an active material and silicon dioxide NPs (silica SiO2) as scatter centers through the Sol-Gel technique. The prepared samples are tested with UV–Vis spectroscopy, Fluorescence Spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Energy Dispersive X-ray Diffraction (EDX). The end result demonstrates that doped dyes with silica nanoparticles at a concentration of 0.0016 mol/ml have lower absorbance and higher fluorescence spectra than pure dyes. FESEM scans revealed that the morphology of nanocrystalline silica is clusters of nano-sized spherical particles in the range (25-67) nm. It is con
... Show MoreThe reliability of optical sources is strongly dependent on the degradation and device characteristics are critically dependent on temperature. The degradation behaviours and reliability test results for the laser diode device (Sony-DL3148-025) will be presented .These devices are usually highly reliable. The degradation behaviour was exhibited in several aging tests, and device lifetimes were then estimated. The temperature dependence of 0.63?m lasers was studied. An aging test with constant light power operation of 5mW was carried out at 10, 25, 50 and 70°C for 100hours. Lifetimes of the optical sources have greatly improved, and these optical sources can be applied to various types of transmission systems. Within this degradation range,
... Show MoreThe present study is an attempt to throw light on the nature of the US policy regarding the Middle East region as portrayed by AI-Sabah, Al-Mashriq and Tariq Al-Shaab papers over a period of three months from 1st of July to 30th of September 2013.
In writing this study, a number of goals have been set by the researcher. These goals may include but in no way limited to the nature of the US image as carried by the above three papers, the nature of the topics tackled by them and the nature of the Arab countries which received more and extensive coverage than others.
A qualitative research approach is proposed for the study. This approach has allowed the researcher to arrive at definite answers for the possible questions rais
... Show MoreThere are many images you need to large Khoznah space With the continued evolution of storage technology for computers, there is a need nailed required to reduce Alkhoznip space for pictures and image compression in a good way, the conversion method Alamueja
Copper nanoparticles (CuNPs) were prepared with different diameters by sonoelectrodeposition technique using Electrodeposition process coupled with high-power ultrasound horn (Sonoelectrodeposition). The particle diameter of the CuNPs was adjusted by varying CuSO4 solution acidity (pH) and current density. The morphology and structure of the CuNPs were examined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It was found that the size of the produced copper nanoparticles ranged between 22 to 77 nm, where the diameter of CuNPs increases with reduction the solution acidity from 0.5 to 1.5 pH and increasing the current density of the deposition from 100 to 400 nm. Finally the produced CuNPs were pressed to fabricate disc
... Show More