In this work, InSe thin films were deposited on glass substrates by thermal evaporation technique with a deposit rate of (2.5∓0.2) nm/sec. The thickness of the films was around (300∓10) nm, and the thin films were annealed at (100, 200 and 300)°C. The structural, morphology, and optical properties of Indium selenide thin films were studied using X-ray diffraction, Scanning Electron Microscope and UV–Visible spectrometry respectively. X-ray diffraction analyses showed that the as deposited thin films have amorphous structures. At annealing temperature of 100°C and 200°C, the films show enhanced crystalline nature, but at 300°C the film shows a polycrystalline structure with Rhombohedral phase with crystallites size of 17.459 nm. The results of the UV–Visible spectrometry in the wavelength range (300 – 1100) nm showed that the band gap energy of the thin films increased with increasing annealing temperature.
Polymer films of PEG and PVA and their blend with different
concentrations of MnCl2 (0, 2, 4, 6 and 10 %.wt) were study using
casting technique. The X-ray spectra of pure PEG, PVA and
PVA:PEG films and with addition of 2% concentrations from
(MnCl2) show amorphous structures. The results for FTIR show the
interaction between the filler and polymer blend results in
decreasing crystallinity with rich amorphous phase. This
amorphous nature confirms the complexation between the filler and
the polymer blend. The optical properties of (PVA:PEG/MnCl2)
contain the recording of absorbance (A) and explain that the
absorption coefficient (α), refractive index (n), extinction coefficient
(ko) and the dielectric cons
Quantum dots (QDs) can be defined as nanoparticles (NPs) in which the movement of charge carriers is restricted in all directions. CdTe QDs are one of the most important semiconducting crystals among other various types where it has a direct energy gap of about 1.53 eV. The aim of this study is to exaine the optical and structural properties of the 3MPA capped CdTe QDs. The preparation method was based on the work of Ncapayi et al. for preparing 3MPA CdTe QDs, and hen, the same way was treated as by Ahmed et al. via hydrothermal method by using an autoclave at the same temperature but at a different reaction time. The direct optical energy gap of CdTe QDs is between 2.29 eV and 2.50 eV. The FTIR results confirmed the covalent bonding betwee
... Show MoreThe optical energy gap and optical constants such as the reflective index, dielectric constant have been evaluated due to The optical transmission and UV-VIS absorption spectra have been recorded in the wavelength (200 - 1100 nm) for PVA/PANI polymer blends and PVA/PANI/ZnO nanocomposites with different concentrations of ZnO (0.02, 0.05, 0.07, 0.1and 0.2) wt %. The results indicate that the materials have allowed direct transition. The reflection index and dielectric constant are increase with wavelength
Pure nano Ferro fluid was synthesized by chemical co-precipitation method. The composite of polyaniline with nano sized Ferro fluid was prepared by In-situ–chemical oxidation polymerization method with ammonium per sulphate as an oxidant in aqueous hydrochloric acid under constant stirring at room temperature. The optical properties, absorption, transmission, optical energy gap (Eg) and optical constant refractive index (n) have been investigated. The value of the Eg decreased with increasing Ferro fluid concentration.
Manganese-zinc ferrite MnxZn1-xFe2O4 (MnZnF) powder was prepared using the sol-gel method. The morphological, structural, and magnetic properties of MnZnF powder were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive X-ray (EDX), field emission-scanning electron microscopes (FE-SEM), and vibrating sample magnetometers (VSM). The XRD results showed that the MnxZn1-xFe2O4 that was formed had a trigonal crystalline structure. AFM results showed that the average diameter of Manganese-Zinc Ferrite is 55.35 nm, indicating that the sample has a nanostructure dimension. The EDX spectrum revealed the presence of transition metals (Mn, Fe, Zn, and O) in Mang
... Show MoreA pulsed (TEA-0O2) laser was used to dissociate molecules of silane ethylene (C2I-14) and ammonia (NH3) gases, through collision assisted multiple photon dissociation (MPD) to deposit(SiC i_xNx) thin films, where the X-values are 0, 0.13 and 0.33, on glass substrate at T,----648 K. deposition rate of (0.416-0.833) nm/pulse and thickness of (500-1000)nm .Fourier transform infrared spectrometry (FT-IR) was used to study the nature of the chemical bonds that exist in the films. Results revealed that these films contain complex networks of the atomic (Si, C, and N), other a quantity of atomic hydrogen and chemical bonds such as (Si-N, C-N, C-14 and N-H).Absorbance and Transmittance spectra in the wavelength range (400-1100) nm were used to stud
... Show MoreThin films of ZnO nano crystalline doped with different concentrations (0, 6, 9, 12, and 18 )wt. % of copper were deposited on a glass substrate via pulsed laser deposition method (PLD). The properties of ZnO: Cu thin-nanofilms have been studied by absorbing UV-VIS, X-ray diffraction (XRD) and atomic force microscopes (AFM). UV-VIS spectroscopy was used to determine the type and value of the optical energy gap, while X-ray diffraction was used to examine the structure and determine the size of the crystals. Atomic force microscopes were used to study the surface formation of precipitated materials. The UV-VIS spectroscopy was used to determine the type and value of the optical energy gap.