Oral squamous cell carcinoma (OSCC) is the most common malignant neoplasm of the oral mucosa. Human papillomavirus (HPV) virus cause a broad scope of diseases from benign to invasive tumors, types 16 and 18 classified as carcinogenic to humans. This study aimed to provide the first molecular characterization of HPV types in Iraq. Thirty-five unstimulated whole saliva samples were collected from histopathologically confirmed patients with oral cancer were enrolled in this study. Genomic DNA was extracted from exfoliating cells to amplify HPV-DNA using HPV-L1 gene sequence primers by polymerase chain reaction method (PCR), the viral genotyping was performed using direct sequencing method. HPV genotypes identified were deposited in GenBank. HPV DNA was detected in 20 of 35 OSCC patients representing (57%).The most frequent HPV genotypes were HPV-18 accounting for (75%) (15 out of 20 patients) followed by HPV-16 accounting for (20%) (4 out of 20), and HPV-11 accounting for (5%) (5 out of 20 patients). This study highlights the high-risk HPV genotypes in OSCC patients and their phylogenetic analysis tree and their homology to the ancestral sequence which may indicate emerging of a new biological entity of HPV-positive OSCC with a potential sexually transmission.
<span>Distributed denial-of-service (DDoS) attack is bluster to network security that purpose at exhausted the networks with malicious traffic. Although several techniques have been designed for DDoS attack detection, intrusion detection system (IDS) It has a great role in protecting the network system and has the ability to collect and analyze data from various network sources to discover any unauthorized access. The goal of IDS is to detect malicious traffic and defend the system against any fraudulent activity or illegal traffic. Therefore, IDS monitors outgoing and incoming network traffic. This paper contains a based intrusion detection system for DDoS attack, and has the ability to detect the attack intelligently, dynami
... Show MoreIn every country in the world, there are a number of amputees who have been exposed to some accidents that led to the loss of their upper limbs. The aim of this study is to suggest a system for real-time classification of five classes of shoulder girdle motions for high-level upper limb amputees using a pattern recognition system. In the suggested system, the wavelet transform was utilized for feature extraction, and the extreme learning machine was used as a classifier. The system was tested on four intact-limbed subjects and one amputee, with eight channels involving five electromyography channels and three-axis accelerometer sensor. The study shows that the suggested pattern recognition system has the ability to classify the sho
... Show MoreMinister Yacoub Ben Keles distinguished himself with leadership and administrative talents, as well as his abilities in the field of jurisprudence, which made him the top political, administrative and cultural scene of the Fatimid state and left its mark on it by influencing its fateful decisions.
He was the son of Kels of the Jews of Baghdad, where he learned writing and arithmetic, and moved with his father to Syria and then carried him to Egypt.
Egypt embraced the son of Kels, living in a transitional period from the Achaishid era to the Fatimid period. Both these two covenants reconciled this man to his career until he became minister in the Fatimids in 368 A.H. / 978 A.D.
His character was overshadowed by most of the state'
Nonsteroidal anti-inflammatory drugs (NSAIDs) are drugs that help reduce inflammation, which often helps to relieve pain. In this research new ibuprofen oxothiazolidnone derivatives were synthesized from the reaction of Schiff base derivatives of Ibuprofen with mercapto acetic acid VI a-c, to improve the potency and to decrease the drug's potential side effects, a new series of 4-thiazolidinone derivatives of ibuprofen was synthesized VI a-c . The characterizations of the compounds were identified by using FTIR, 1HNMR technique and by measuring the physical properties.
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More