Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.
Heavy oil is classified as unconventional oil resource because of its difficulty to recover in its natural state, difficulties in transport and difficulties in marketing it. Upgrading solution to the heavy oil has positive impact technically and economically specially when it will be a competitive with conventional oils from the marketing prospective. Developing Qaiyarah heavy oil field was neglected in the last five decades, the main reason was due to the low quality of the crude oil resulted in the high viscosity and density of the crude oil in the field which was and still a major challenge putting them on the major stream line of production in Iraq. The low quality of the crude properties led to lower oil prices in the global markets
... Show MoreMH Hamzah, AF Abbas, International Journal of Early Childhood Special Education, 2022
Flexible job-shop scheduling problem (FJSP) is one of the instances in flexible manufacturing systems. It is considered as a very complex to control. Hence generating a control system for this problem domain is difficult. FJSP inherits the job-shop scheduling problem characteristics. It has an additional decision level to the sequencing one which allows the operations to be processed on any machine among a set of available machines at a facility. In this article, we present Artificial Fish Swarm Algorithm with Harmony Search for solving the flexible job shop scheduling problem. It is based on the new harmony improvised from results obtained by artificial fish swarm algorithm. This improvised solution is sent to comparison to an overall best
... Show MoreEach organization struggles to exploit each possible opportunity for gaining success and continuing with its work carrier. In this field, organization success can be concluded by fulfilling end user requirements combined with optimizing available resources usage within a specified time and acceptable quality level to gain maximum profit. The project ranking process is governed by the multi-criteria environment, which is more difficult for the governmental organization because other organizations' main target is maximizing profit constrained with available resources. The governmental organization should consider human, social, economic and many more factors. This paper focused on building a multi-criteria optimizing proje
... Show MoreIn this paper, a fixed point theorem of nonexpansive mapping is established to study the existence and sufficient conditions for the controllability of nonlinear fractional control systems in reflexive Banach spaces. The result so obtained have been modified and developed in arbitrary space having Opial’s condition by using fixed point theorem deals with nonexpansive mapping defined on a set has normal structure. An application is provided to show the effectiveness of the obtained result.