Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.
The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreThis paper deals with proposing new lifting scheme (HYBRID Algorithm) that is capable of preventing images and documents which are fraud through decomposing there in to the real colors value arrays (red, blue and green) to create retrieval keys for its properties and store it in the database and then check the document originality by retrieve the query image or document through the decomposition described above and compare the predicted color values (retrieval keys) of the query document with those stored in the database. The proposed algorithm has been developed from the two known lifting schemes (Haar and D4) by merging them to find out HYBRID lifting scheme. The validity and accuracy of the proposed algorithm have been ev
... Show MoreAbstract
In this study, mucilage was extracted from Malabar spinach and tested for drag-reducing properties in aqueous liquids flowing through pipelines. Friction produced by liquids flowing in turbulent mode through pipelines increase power consumption. Drag-reducing agents (DRA) such as polymers, suspended solids and surfactants are used to reduce power losses. There is a demand for natural, biodegradable DRA and mucilage is emerging as an attractive alternative to conventional DRAs. Literature review revealed that very little research has been done on the drag-reducing properties of this mucilage and there is an opportunity to explore the potential applications of mucilage from Malabar spinach. An experi
... Show MoreThis research takes up address the practical side by taking case studies for construction projects that include the various Iraqi governorates, as it includes conducting a field survey to identify the impact of parametric costs on construction projects and compare them with what was reached during the analysis and the extent of their validity and accuracy, as well as adopting the approach of personal interviews to know the reality of the state of construction projects. The results showed, after comparing field data and its measurement in construction projects for the sectors (public and private), the correlation between the expected and actual cost change was (97.8%), and this means that the data can be adopted in the re
... Show MoreThis paper is concerned with the quaternary nonlinear hyperbolic boundary value problem (QNLHBVP) studding constraints quaternary optimal classical continuous control vector (CQOCCCV), the cost function (CF), and the equality and inequality quaternary state and control constraints vector (EIQSCCV). The existence of a CQOCCCV dominating by the QNLHBVP is stated and demonstrated using the Aubin compactness theorem (ACTH) under appropriate hypotheses (HYPs). Furthermore, mathematical formulation of the quaternary adjoint equations (QAEs) related to the quaternary state equations (QSE) are discovere so as its weak form (WF) . The directional derivative (DD) of the Hamiltonian (Ham) is calculated. The necessary and sufficient conditions for
... Show MorePerennial biofuel and cover crops systems are important for enhancing soil health and can provide numerous soil, agricultural, and environmental benefits. The study objective was to investigate the effects of cover crops and biofuel crops on soil hydraulic properties relative to traditional management for claypan soils. The study site included selected management practices: cover crop (CC) and no cover crop (NC) with corn/soybean rotation, switchgrass (SW), and miscanthus (MI). The CC mixture consisted of cereal rye, hairy vetch, and Austrian winter pea. The research site was located at Bradford Research Center in Missouri, USA, and was implemented on a Mexico silt loam. Intact soil cores (76‐mm diam. by 76‐mm long) were taken from the
... Show MoreData <span>transmission in orthogonal frequency division multiplexing (OFDM) system needs source and channel coding, the transmitted data suffers from the bad effect of large peak to average power ratio (PAPR). Source code and channel codes can be joined using different joined codes. Variable length error correcting code (VLEC) is one of these joined codes. VLEC is used in mat lab simulation for image transmission in OFDM system, different VLEC code length is used and compared to find that the PAPR decreased with increasing the code length. Several techniques are used and compared for PAPR reduction. The PAPR of OFDM signal is measured for image coding with VLEC and compared with image coded by Huffman source coding and Bose-
... Show MoreBackground: Ulcerative colitis (UC) is an inflammatory bowel disease restricted to the large intestine, characterized by superficial ulceration. It is a progressive and chronic disease requiring long-term treatment. Although its etiology remains unknown, it is suggested that environmental factors influence genetically susceptible individuals, leading to the onset of the disease. (C-X-C) ligand 9 is a chemokine that belongs to the CXC chemokine family, it plays a role in the differentiation of immune cells such as cytotoxic lymphocytes, natural killer T cells, and macrophages. Its interaction with its corresponding receptor CXCR3 which is expressed by a variety of cells such as effector T cells, CD8+ cytotoxic T cells, and macrophage
... Show More