Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.
Economic analysis plays a pivotal role in managerial decision-making processes. This analysis is predicated on deeply understanding economic forces and market factors influencing corporate strategies and decisions. This paper delves into the role of economic data analysis in managing small and medium-sized enterprises (SMEs) to make strategic decisions and enhance performance. The study underscores the significance of this approach and its impact on corporate outcomes. The research analyzes annual reports from three companies: Al-Mahfaza for Mobile and Internet Financial Payment and Settlement Services Company Limited, Al-Arab for Electronic Payment Company, and Iraq Electronic Gateway for Financial Services Company. The paper concl
... Show MoreNowadays, people's expression on the Internet is no longer limited to text, especially with the rise of the short video boom, leading to the emergence of a large number of modal data such as text, pictures, audio, and video. Compared to single mode data ,the multi-modal data always contains massive information. The mining process of multi-modal information can help computers to better understand human emotional characteristics. However, because the multi-modal data show obvious dynamic time series features, it is necessary to solve the dynamic correlation problem within a single mode and between different modes in the same application scene during the fusion process. To solve this problem, in this paper, a feature extraction framework of
... Show MoreAccurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles
... Show MoreIn this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that
Background: Eucalyptus extracts and derivatives are natural substances with potent antimicrobial properties. This study investigated the in- vitro effects of non-nutritive sweeteners on the antifungal activity of alcoholic and aqueous Eucalyptus extracts against Candida albicans, a common oral pathogen. Materials and Method: Ten isolates of Candida albicans were isolated from dental students’ salivary samples. The alcoholic and aqueous extracts were prepared from fresh Eucalyptus leaves using maceration. The sensitivity of Candida albicans isolates to various concentrations of Eucalyptus extracts ranging from 50 to 250 (mg/mL) was evaluated via agar well diffusion method, while the agar streaking method was used to assess the minimum
... Show MoreThe research problem was to identify the impact of monetary policies on economic growth in the oil and non-oil countries. The researcher chose the Republic of Iraq as an example for the oil countries and the Arab Republic of Egypt as an example for the non-oil countries to hold a comparison on the impact of monetary policies.
The research found that the monetary policies and their tools in the Iraqi economy affect the rate of GDP growth by 73%, which shows the strong impact of monetary policies on the economic growth in the Iraqi economy as an example of an oil state. GDP growth rate of 61%, indicating the impact of monetary policies on economic growth in the
In petroleum reservoir engineering, history matching refers to the calibration process in which a reservoir simulation model is validated through matching simulation outputs with the measurement of observed data. A traditional history matching technique is performed manually by engineering in which the most uncertain observed parameters are changed until a satisfactory match is obtained between the generated model and historical information. This study focuses on step by step and trial and error history matching of the Mishrif reservoir to constrain the appropriate simulated model. Up to 1 January 2021, Buzurgan Oilfield, which has eighty-five producers and sixteen injectors and has been under production for 45 years when it started
... Show More—This paper studies the control motion of a single link flexible joint robot by using a hierarchical non-singular terminal sliding mode controller (HNTSMC). In comparison to the conventional sliding mode controller (CSMC), the proposed algorithm (NTSMC) not only can conserve characteristics of the convention CSMC, such as easy implementation, guaranteed stability and good robustness against system uncertainties and external disturbances, but also can ensure a faster convergence rate of the systems states to zero in a finite time and singularity free. The flexible joint robot (FJR) is a two degree of freedom (2DOF) nonlinear and underactuated system. The system here is modeled as a fourth order system by using Lagrangian method. Based on t
... Show More