With the increasing intensity of the ecological and environmental problems and the scarcity of fresh water, this paper was introduced to investigate the ability to use treated wastewater as a cooling media via studying its behavior throughout a cooling tower. The simultaneous transfer of heat and mass from the treated wastewater to air over splash-fill packing arranged in a zigzag manner was studied. The characteristic of the cooling tower, the outlet water temperature, and the rejected heat were investigated as the water-to-air ratio and inlet water temperature were varied. The core results show that the cooling tower of the tower decreases with increasing water-to-air ratio, and increases with the raise of inlet water temperature. Moreover, relationships between cooling tower and water-to-air ratio were obtained for each. It was also observed that the outlet water temperature increases gradually with increasing water-to-air ratio and temperature, and the difference between the inlet and outlet temperature becomes larger by increasing the inlet temperature. The heat rejected value increases with increasing the air-flow rate, water flow rate, and temperature. This study revealed that cooling tower of splash fills arranged in a zigzag manner was higher compared to other types of packing. In the same time, the results for the treated wastewater and fresh water were very close that gives approximate behavior, and this can save a huge amount of fresh water for other humanistic utilization, along with taking benefit from the treatment process of wastewater instead of through it into the aquatic systems.
The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult conditions like radiation, high temperature and noise with minimum cost of manufacturing and maintenance. A vortex rate sensor made of wood has been designed and manufactured to study theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that the relation between the differential pressure taken from the sensor pickoff points and the angular velocity of the sensor was linear.The present work involved theoretical and experimental study of vortex rate sensor static characteristics .Vortex rat
The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult
conditions like radiation, high temperature and noise with minimum cost of manufacturing and
maintenance. A vortex rate sensor made of wood has been designed and manufactured to study
theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that
the relation between the differential pressure taken from the sensor pickoff points and the angular
velocity of the sensor was linear.The present work involved theoretical and experimental study of
vortex rate sensor static characteri
In the present work the performance of semifluidized bed adsorber was evaluated for removal of phenolic compound from wastewater using commercial activated carbon as adsorbent. P-chlorophenol (4-Chlorophenol) and o-cresol (2-methylphenol) was selected as a phenolic compound for that purpose. The phenols percent removal, in term of breakthrough curves were studied as affected by hydrodynamics limitations which include minimum and maximum semifluidization velocities and packed bed formation in the column by varying various parameters such as inlet liquid superficial velocity (from Uminsf to 8Uminsf m/s), and retaining grid (sometimes referred to as adsorbent loading) to initial static bed height ratio (from 3-4.5). In
... Show MoreThe physical, mechanical, electrical and thermal properties containing (Viscosity, curing, adhesion force, Tensile strength, Lap shear strength, Resistively, Electrical conductivity and flammability) of adhesive material that prepared from Nitrocellulose reinforced with graphite particles and aluminum streat. A comparison is made between the properties of adhesive material with varying percentage of graphite powder (0%, 25%, 30%, 35%, 40%) to find out the effect of reinforcement on the adhesive material. The ability of property an electrical was studied through the measurement of conductivity a function of temperature varying. The results of comparison have clearly shown that the increasing of conten
... Show MoreFour new copolymers were synthesized from reaction of bis acid monomer 3-((4-carboxyphenyl) diazenyl)-5-chloro-2-hydroxybenzoic acid with five diacidhydrazide in presence of poly phosphoric acid. The resulted monomers and copolymers have been characterized by FT-IR, 1H-NMR, 13C-NMR spectroscopy as well as EIMs technique. The number averages of molecular weights of the copolymers are between 4822 and 9144, and their polydispersity indexes are between 1.02 and 2.15. All the copolymers show good thermal stability with the temperatures higher than 305.86 C when losing 10% weight under nitrogen. The cyclic voltammetry (CV) measurement and the electrochemical band gaps (Eg) of these copolymers are found below 2.00 ev.
Thermomechanical analysis (TMA) and differential scanning calorimetry (DSC) are used to investigate the effect of molding and annealing of polyester on the behavior of thermal expansion and crystallization since these factors play role in the reprocessing or recycling of the polymer. The dynamic mode of the TMA provides enhanced characterization information about the polyester since it separates the transitions into reversible and irreversible signals, and also reveals the progress of the amorphous regions as the polyester loses strength with the increasing temperature approaching melting. Slow cooling after annealing brings crystallization that may be attributed to molecular chain straightening due to orientation.
Newly acid hydrazide was synthesized from ethyl 2-(2,3-dimethoxyphenoxy) acetate (2), which is cyclized to the corresponding 4-amino-1,2,4-triazole (3). Five newly azo derivatives (4a-e) were synthesized from this 1,2,4-triazole by converting the amine group to diazonium salt then reacted with various substituent phenol,as well three newly imine derivatives (5a-c) were synthesized from reacting the amine group of compound (3) with three aryl aldehyde. The thermal electro conductivity of these compounds was tested at 30, 50, 75 and 100 áµ’C. compound 4a showed interesting electro conductivity at 75áµ’C as well 5a at 75áµ’C while 5b showed significant conductivity at 100 áµ’C
Nanoparticles (NPs) have unique capabilities that make them an eye-opener opportunity for the upstream oil industry. Their nano-size allows them to flow within reservoir rocks without the fear of retention between micro-sized pores. Incorporating NPs with drilling and completion fluids has proved to be an effective additive that improves various properties such as mud rheology, filtration, thermal conductivity, and wellbore stability. However, the biodegradability of drilling fluid chemicals is becoming a global issue as the discharged wetted cuttings raise toxicity concerns and environmental hazards. Therefore, it is urged to utilize chemicals that tend to break down and susceptible to biodegradation. This research presents the pra
... Show MoreTo reduce the effects of discharging heated water disposed into a river flow by a single thermal source, two parameters were changed to get the minimum effect using optimization. The first parameter is to distribute the total flow of the heated water between two disposal points (double source) instead of one and the second is to change the distance between these two points. In order to achieve the solution, a two dimensional numerical model was developed to simulate and predict the changes in temperature distribution in the river due to disposal of the heated water using these two points of disposal.
MATLAB-7 software was used to build a program that could solve the governing partial equations of thermal pollution in rivers by using t