This paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
The main objective of this study is to characterize the main factors which may affect the behavior of segmental prestressed concrete beams comprised of multi segments. The 3-D finite element program ABAQUS was utilized. The experimental work was conducted on twelve simply supported segmental prestressed concrete beams divided into three groups depending on the precast segments number. They all had an identical total length of 3150mm, but each had different segment numbers (9, 7, and 5 segments), in other words, different segment lengths. To simulate the genuine fire disasters, nine beams were exposed to high-temperature flame for one hour, the selected temperatures were 300°C (572°F), 500°C (932°F) and 700°C (1292°F) as recomm
... Show MoreA numerical study has been carried out to investigate heat transfer by natural convection and radiation under the effect of magnetohydrodynamic (MHD) for steady state axisymmetric twodimensional laminar flow in a vertical cylindrical channel filled with saturated porous media. Heat is generated uniformly along the center of the channel with its vertical surface remain with cooled constant wall temperature and insulated horizontal top and bottom surfaces. The governing equations which used are continuity, momentum and energy equations which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 programming. The parameters affected on the system are Rayl
... Show MoreThe numerical response of Chrysoperla mutata MacLachlan was achieved by exposing the larvae of the predators to various densities of dubas nymphs Ommatissus lybicus DeBerg. Survival rate of predators’ larvae and adults emergence increased with increasing consumption . Repriductive response of predator was highly correlated with the amount of food consumed (+0.996).
The aim of this paper is to present the numerical method for solving linear system of Fredholm integral equations, based on the Haar wavelet approach. Many test problems, for which the exact solution is known, are considered. Compare the results of suggested method with the results of another method (Trapezoidal method). Algorithm and program is written by Matlab vergion 7.
We present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.
Under-reamed piles defined by having one or more bulbs have the potential for sizeable major sides over conventional straight-sided piles, most of the studies on under-reamed piles have been conducted on the experimental side, while theoretical studies, such as the finite element method, have been mainly confined to conventional straight-sided piles. On the other hand, although several laboratory and experimental studies have been conducted to study the behavior of under-reamed piles, few numerical studies have been carried out to simulate the piles' performance. In addition, there is no research to compare and evaluate the behavior of these piles under dynamic loading. Therefore, this study aimed to numerically investigate bearing capaci
... Show MoreIn this work, a joint quadrature for numerical solution of the double integral is presented. This method is based on combining two rules of the same precision level to form a higher level of precision. Numerical results of the present method with a lower level of precision are presented and compared with those performed by the existing high-precision Gauss-Legendre five-point rule in two variables, which has the same functional evaluation. The efficiency of the proposed method is justified with numerical examples. From an application point of view, the determination of the center of gravity is a special consideration for the present scheme. Convergence analysis is demonstrated to validate the current method.