Waveform flow of non-Newtonian fluid through a porous medium of the non-symmetric sloping canal under the effect of rotation and magnetic force, which has applied by the inclined way, have studied analytically and computed numerically. Slip boundary conditions on velocity distribution and stream function are used. We have taken the influence of heat and mass transfer in the consideration in our study. We carried out the mathematical model by using the presumption of low Reynolds number and small wave number. The resulting equations of motion, which are representing by the velocity profile and stream function distribution, solved by using the method of a domain decomposition analysis and we obtained the exact solutions of velocity, temperature, and concentration. The expressions of velocity, temperature, and concentration of the particles of the fluid have obtained and examined graphically by utilizing the soft wave of the Mathematica program. The efforts of various variables on mathematical modeling of motion and energy are discussed in detail. We found that.
Background: Arterial stiffness is related with atherosclerosis and cardiovascular disease events. Patients with atherosclerotic disease show to have larger diameters, reduced arterial compliance and lower flow velocities. Aim of study : To compare between patients of two age groups with concomitant diseases diabetes and hypertension in regard to intima media thickness and blood flow characteristics in order to estimate the blood perfusion to the brain via the common and internal carotid arteries. Subject and Methods : 40 patients with (diabetic and hypertension) diseases were enrolled , they were classified according to age. Color Doppler and B mode ultrasound was used to determine lumen Diameter (D), Intima – media thickness (IMT)
... Show MoreIn the present research a new test rig has been proposed to be suitable for different cyclic loads such as cyclic bending, cyclic torsion, proportional and non proportional loads. In this work the efforts were concentrated on the cyclic bending loads concerning cracked pipes with or without internal pulsing pressure to study crack propagation in small bore pipes (up to 1'') for transverse or inclined cracks. The rig simulates the real service conditions under different stresses by means the least dangerous case will be suggested, so the experiments were considered for copper pipe, and the results have been tabulated and drawn to demonstrate the crack growth behavior as well as to justify the outcomes practically, consequently the durabil
... Show MoreCams are considered as one of the most important mechanical components that depends the contact action to do its job and suffer a lot of with drawbacks to be predicted and overcame in the design process. this work aims to investigate the induced cam contact and the maximum shear stress energy or (von misses) stresses during the course of action analytically using Hertz contact stress equation and the principal stress formulations to find the maximum stress value and its position beneath the contacting surfaces. The experimental investigation adopted two dimensions photoelastic technique to analyze cam stresses under a plane polarized light. The problem has been numerically simulated using Ansys software version 15 as FE
... Show MoreBackground: Morphology of the root canal system is divergent and unpredictable, and rather linked to clinical complications, which directly affect the treatment outcome. This objective necessitates continuous informative update of the effective clinical and laboratory methods for identifying this anatomy, and classification systems suitable for communication and interpretation in different situations. Data: Only electronic published papers were searched within this review. Sources: “PubMed” website was the only source used to search for data by using the following keywords "root", "canal", "morphology", "classification". Study selection: 153 most relevant papers to the topic were selected, especially the original articles and review pa
... Show MoreThis paper investigates a new approach to the rapid control of an upper limb exoskeleton actuator. We used a mathematical model and motion measurements of a human arm to estimate joint torque as a means to control the exoskeleton’s actuator. The proposed arm model is based on a two-pendulum configuration and is used to obtain instantaneous joint torques which are then passed into control law to regulate the actuator torque. Nine subjects volunteered to take part in the experimental protocol, in which inertial measurement units (IMUs) and a digital goniometer were used to measure and estimate the torque profiles. To validate the control law, a Simscape model was developed to simulate the arm model and control law in which measurem
... Show MoreThe rotation effect upon Morse potential had been studied and the values of the effective potential in potential curves had been calculated for electronic states (X2?+g , B ?u ) K2 molecule. The calculation had been computed for rotational quantum number (J = 5). Also, drawing potential curves for these systems had been done using Herzberg and Gaydon equations. It was found that the values of the dissociation energy which resulting from using Herzberg equation greater than that of Gaydon equation. Besides, it was found that the rotation effect for (X and B) electronic states in Morse potential is very small and in this case may negligible.