Preferred Language
Articles
/
XhZUE4cBVTCNdQwCHjQk
Predicting dynamic shear wave slowness from well logs using machine learning methods in the Mishrif Reservoir, Iraq
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Mar 31 2025
Journal Name
The Iraqi Geological Journal
Evaluation of Machine Learning Techniques for Missing Well Log Data in Buzurgan Oil Field: A Case Study
...Show More Authors

The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Dec 11 2013
Journal Name
Iraqi Journal Of Science
Diagnosing Complex Flow Characteristics of Mishrif Formation in Stimulated Well Using Production Logging Tool
...Show More Authors

Production logging is used to diagnose well production problems by evaluating the flow profile, entries of unwanted fluids and downhole flow regimes. Evaluating wells production performance can be easily induce from production logs through interpretation of production log data to provide velocity profile and contribution of each zone on total production. Production logging results supply information for reservoir modeling, provide data to optimize the productivity of existing wells and plan drilling and completion strategies for future wells. Production logging was carried out in a production oil well from Mishrif formation of West Qurna field, with the objective to determine the flow profile and fluid contributions from the perforations af

... Show More
View Publication
Publication Date
Wed Dec 11 2013
Journal Name
Proceeding Of The 2nd International Conference On Iraq Oil Studies
Diagnosing Complex Flow Characteristics of Mishrif Formation in Stimulated Well Using Production Logging Tool
...Show More Authors

Production logging is used to diagnose well production problems by evaluating the flow profile, entries of unwanted fluids and downhole flow regimes. Evaluating wells production performance can be easily induce from production logs through interpretation of production log data to provide velocity profile and contribution of each zone on total production. Production logging results supply information for reservoir modeling, provide data to optimize the productivity of existing wells and plan drilling and completion strategies for future wells. Production logging was carried out in a production oil well from Mishrif formation of West Qurna field, with the objective to determine the flow profile and fluid contributions from the perforations af

... Show More
Publication Date
Wed Jan 01 2020
Journal Name
Iraqi Geological Journal
Reservoir modeling for mishrif formation in Nasiriyah oilfield
...Show More Authors

Scopus (6)
Scopus
Publication Date
Sat Aug 09 2025
Journal Name
Scientific Reports
Machine learning models for predicting morphological traits and optimizing genotype and planting date in roselle (Hibiscus Sabdariffa L.)
...Show More Authors

Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Detecting Textual Propaganda Using Machine Learning Techniques
...Show More Authors

Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation.  Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annota

... Show More
View Publication Preview PDF
Scopus (25)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sat Sep 08 2018
Journal Name
Modeling Earth Systems And Environment
Sedimentary units-layering system and depositional model of the carbonate Mishrif reservoir in Rumaila oilfield, Southern Iraq
...Show More Authors

View Publication
Crossref (15)
Crossref
Publication Date
Wed May 05 2021
Journal Name
Journal Of Petroleum Research And Studies
The Role of Chemistry of the Oil-Field Water in the Distribution of Reservoir Pressures: A Case Study of Mishrif Reservoir in the Southern Oil-Fields, Iraq
...Show More Authors

Mishrif Formation is the main reservoir in oil-fields (North Rumaila, South Rumaila, Majnoon, Zubair and West Qurna) which located at Basrah southern Iraq. The Inductively coupled plasma-Mass spectrometer (ICP-MS) was used for the water chemistry analysis and Scanning Electron Microprobe (SEM) for the purpose of mineralogy diagnosis. A weak acidic water of salinity six-time greater than seawater plays a role in generating the formation pressure and controlling the fluid flow. The potentiometric subsurface maps were modeled and the direction of super-pressure sites that are of a great importance in the oil exploration were marked to pay attention during future drilling.

View Publication
Crossref
Publication Date
Wed Oct 26 2022
Journal Name
Petroleum Science And Technology
Building 3D geological model using non-uniform gridding for Mishrif reservoir in Garraf oilfield
...Show More Authors

View Publication
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref