Bigheaded carps (bighead carp, Hypophthalmichthys molitrix, and silver carp, Hypophthalmichthys nobilis) and their hybrids play an important ecological and economic role in their original habitat, while their introduced stocks may pose serious ecological risks. To address questions about the persistence and invasiveness of these fish, we need to better understand their population structures. The genetic structures of bigheaded carp populations inhabiting Lake Balaton and the Tisza River were examined with ten microsatellite markers and a mitochondrial DNA marker (COI). The Lake Balaton stock showed higher genetic diversity compared with the Tisza River stock. Based on hierarchical clustering, the Tisza population was characterized only by only silver carps, while the Balaton stock included hybrid and silver carp individuals. All COI haplotypes originated from the Yangtze River. Based on the high genomic and mitochondrial diversity, along with the significant deviation from H–W equilibrium and the lack of evidence of bottleneck effect, it can be assumed that bigheaded carps do not reproduce in Lake Balaton. The present stock in Balaton may have originated from repeated introductions and escapes from the surrounding fishponds. The Tisza stock consists solely of silver carp individuals. This stock appears to have significant reproductive potential and may become invasive if environmental factors change due to climate change.
This study offers numerical simulation results using the ABAQUS/CAE version 2019 finite element computer application to examine the performance, and residual strength of eight recycle aggregate RC one-way slabs. Six strengthened by NSM CFRP plates were presented to study the impact of several parameters on their structural behavior. The experimental results of four selected slabs under monotonic load, plus one slab under repeated load, were validated numerically. Then the numerical analysis was extended to different parameters investigation, such as the impact of added CFRP length on ultimate load capacity and load-deflection response and the impact of concrete compressive strength value on the structural performance of
... Show More
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MoreWe aimed to obtain magnesium/iron (Mg/Fe)-layered double hydroxides (LDHs) nanoparticles-immobilized on waste foundry sand-a byproduct of the metal casting industry. XRD and FT-IR tests were applied to characterize the prepared sorbent. The results revealed that a new peak reflected LDHs nanoparticles. In addition, SEM-EDS mapping confirmed that the coating process was appropriate. Sorption tests for the interaction of this sorbent with an aqueous solution contaminated with Congo red dye revealed the efficacy of this material where the maximum adsorption capacity reached approximately 9127.08 mg/g. The pseudo-first-order and pseudo-second-order kinetic models helped to describe the sorption measure