The Halabja earthquake occurred on 12/11/2017 in Iraq, with a magnitude of 7.3 Mw, which happened in the Iraqi-Iranian borders. This earthquake killed and injured many people in the Kurdish region in the north of the country. There is no natural disaster more dangerous than earthquake, especially it occurs without warning, great attention must be paid to the impact of earthquakes on the soil and preparing for a wave of earthquakes. Numerical modeling using specific elements is considered a powerful tool to investigate the required behavior of structures in Geotechnical engineering, and the main objective of this is to assess the response of the Al-Wand dam to the Halabja earthquake, as this dam is located in an area that has been subjected to seismic activity recently. The modeling was done through the Geo-studio program, where the seepage was analyzed during the Al-wand dam using the Seep/w program. It was verified that the dam was safe against seepage failure and then moved to the QUAKE/W (a subprogram of GEOSTUDIO, which is used for liquefaction modeling of earthquakes and dynamic loading and determines the movement and increased pressures of pore water that arise due to earthquake vibration or sudden shock loads). The program was used to analyze the effect of the earthquake on the porewater pressure, effective stresses, and displacements. Also, it is not clear that the significant impact the earthquake has on these values. Finally, the Slope/w program was used to analyze the stability of the dam and to calculate the safety factor of the dam in two ways, and the results of the analysis show that the dam is considered safe under the influence of the tremor.
The transition from low Earth orbit 200-1500 (km) to geostationary Earth orbit 42162 (km) was studied in this work by many methods of transfer. The delta-v requirement (Δv), the time of flight (Δt), the mass ratio of propellant consume (Δm/m) and total mass was calculated for many values altitude in the same plane also when the plane is change. The results from work show that (Δv) that required for transfer when the plane of orbit change is large than (Δv) required when the transfer in coplanar maneuvers while the bi-elliptical transfer method need time of transfer longer than a Hohmann transfer method. The most energy efficiency was determined when the transfer in coaxial between elliptical orbits
... Show MoreIn this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3
In Australia, most of the existing buildings were designed before the release of the Australian standard for earthquake actions in 2007. Therefore, many existing buildings in Australia lack adequate seismic design, and their seismic performance must be assessed. The recent earthquake that struck Mansfield, Victoria near Melbourne elevated the need to produce fragility curves for existing reinforced concrete (RC) buildings in Australia. Fragility curves are frequently utilized to assess buildings’ seismic performance and it is defined as the demand probability surpassing capacity at a given intensity level. Numerous factors can influence the results of the fragility assessment of RC buildings. Among the most important factors that can affe
... Show MoreIn this paper, a numerical analysis was carried out using finite element method to analyse the mechanisms for streamer discharges. The hydrodynamic model was used with three charge carriers equations (positive ion, negative ion and electron) coupled with Poisson equation to simulate the dynamic of streamer discharge formation and propagation. The model was tested within a 2D axisymmetric tip-plate electrodes configuration using the transformer oil as the dielectric liquid. The distance between the electrodes was fixed at 1 mm and the applied voltage was 130 kV at 46 ns rising time. Simulation results showed that the time has a clear effect on the streamer propagation along the symmetry axis. In addition, it was observed that t
... Show MoreThe gypseous soil may be one of the problems that face the engineers especially when it used as a foundation for hydraulic structures, roads, and other structures. Gypseous soil is strong soil and has good properties when it is dry, but the problem arises when building hydraulic installations or heavy buildings on this soil after wetting the water to the soil by raising the water table level from any source or from rainfall which leads to dissolve the gypsum content. Cement-stabilized soil has been successfully used as a facing or lining for earth channel, highway embankments and drainage ditches to reduce the risk of erosion and collapsibility of soil. This study is deliberate the treatment of gypseous soil by using a mixture
... Show MoreThe gypseous soil may be one of the problems that face the engineers especially when it used as a foundation for hydraulic structures, roads, and other structures. Gypseous soil is strong soil and has good properties when it is dry, but the problem arises when building hydraulic installations or heavy buildings on this soil after wetting the water to the soil by raising the water table level from any source or from rainfall which leads to dissolve the gypsum content.
Cement-stabilized soil has been successfully used as a facing or lining for earth channel, highway embankments and drainage ditches to reduce the risk of erosion and collapsibility of soil. This study is deliberate the treatment of gypseous soil by u
... Show MoreReceipt date:9/1/2020 accepted date:11/24/2020 Publication date:12/31/2021
This work is licensed under a Creative Commons Attribution 4.0 International License.
the Nile River and the Renaissance Dam is one of the most prominent factors that had an important role in the nature of relations between Egypt - Ethiopia, as they contributed to building a relationship that has common characteristics through the nature of the i
... Show MoreThe main objective of this study is to characterize the main factors which may affect the behavior of segmental prestressed concrete beams comprised of multi segments. The 3-D finite element program ABAQUS was utilized. The experimental work was conducted on twelve simply supported segmental prestressed concrete beams divided into three groups depending on the precast segments number. They all had an identical total length of 3150mm, but each had different segment numbers (9, 7, and 5 segments), in other words, different segment lengths. To simulate the genuine fire disasters, nine beams were exposed to high-temperature flame for one hour, the selected temperatures were 300°C (572°F), 500°C (932°F) and 700°C (1292°F) as recomm
... Show MoreIn this work, a joint quadrature for numerical solution of the double integral is presented. This method is based on combining two rules of the same precision level to form a higher level of precision. Numerical results of the present method with a lower level of precision are presented and compared with those performed by the existing high-precision Gauss-Legendre five-point rule in two variables, which has the same functional evaluation. The efficiency of the proposed method is justified with numerical examples. From an application point of view, the determination of the center of gravity is a special consideration for the present scheme. Convergence analysis is demonstrated to validate the current method.