An experimental study was conducted with low cost natural waste adsorbent materials, barley husks and eggshells, for the removal of Levofloxacine (LEVX) antibacterial from synthetic waste water. Batch sorption tests were conducted to study their isothermal adsorption capacity and compared with conventional activated carbon which were, activated carbon > barley husks > eggshells with removal efficiencies 74, 71 and 42 % with adsorbents doses of 5, 5 and 50 g/L of activated carbon, barley husks, and eggshells respectively. The equilibrium sorption isotherms had been analyzed by Langmuir, Freundlich, and Sips models, and their parameters were evaluated. The experimental data were correlated well with the Langmuir model which gives the
... Show MoreExcessive intake of fluoride, mainly through drinking water is a serious health hazard affecting humans worldwide. In this study, the defluoridation capacities of locally available raw waste beef bones have been estimated. Several experimental parameters including contact time, pH, bone dose, fluoride initial concentration, bone grains size, agitation rate, and the effect of co-existence of anions in actual samples of wastewater were studied for fluoride removal from aqueous solutions. Results indicated excellent fluoride removal effeciency up to 99.7% at fluoride initial concentration of 10 mg F/L and 120 min contact time. Maximum fluoride uptake was obtained at neutral pH range 6-7. Fluoride removal kinetic was well described by the ps
... Show MoreExperimental measurements of viscosity and thermal conductivity of single layer of graphene . based DI-water nanofluid are performed as a function of concentrations (0.1-1wt%) and temperatures between (5 to 35ºC). The result reveals that the thermal conductivity of GNPs nanofluids was increased with increasing the nanoparticle weight fraction concentration and temperature, while the maximum enhancement was about 22% for concentration of 1 wt.% at
35ºC. These experimental results were compared with some theoretical models and a good agreement between Nan’s model and the experimental results was observed. The viscosity of the graphene nanofluid displays Newtonian and Non-Newtonian behaviors with respect to nanoparticles concen
The present work aims to study the removal of dyes from wastewater by reverse osmosis process. Two dyes were used direct blue 6, and direct yellow. Experiments were performed with feed concentration (75 – 450 ppm), operation temperature (30 – 50 oC) and time (0.2 – 2.0 hr). The membrane used is thin film composite membrane (TFC). It was found that modal permeate concentration decreases with increasing feed concentration and time operating, while permeate concentration increases with increasing feed temperature. Also it was found that product rate increase with increasing temperature, but it decrease with increasing feed concentration and time. The concentration of reject solution showed an increase with increasing feed concentratio
... Show MoreGlobal technological advancements drive daily energy consumption, generating additional carbon-induced climate challenges. Modifying process parameters, optimizing design, and employing high-performance working fluids are among the techniques offered by researchers for improving the thermal efficiency of heating and cooling systems. This study investigates the heat transfer enhancement of hybrid “Al2O3-Cu/water” nanofluids flowing in a two-dimensional channel with semicircle ribs. The novelty of this research is in employing semicircle ribs combined with hybrid nanofluids in turbulent flow regimes. A computer modeling approach using a finite volume approach with k-ω shear stress transport turbulence model was used in these simu
... Show MoreThis study utilizes streamline simulation to model fluid flow in the complex subsurface environment of the Mishrif reservoir in Iraq's Buzurgan oil field. The reservoir faces challenges from high-pressure depletion and a substantial increase in water cut during production, prompting the need for innovative reservoir management. The primary focus is on optimizing water injection procedures to reduce water cuts and enhance overall reservoir performance. Three waterflooding tactics were examined: normal conditions without injectors or producers, normal conditions with 30 injectors and 80 producers and streamline simulation using the frontsim simulator. Three main strategies were employed to streamline water injection in targeted areas.
... Show MoreWater contamination is a pressing global concern, especially regarding the presence of nitrate ions. This research focuses on addressing this issue by developing an effective adsorbent for removing nitrate ions from aqueous solutions. two adsorbents Chitosan-Zeolite-Zirconium (Cs-Ze-Zr composite beads and Chitosan-Bentonite-Zirconium Cs-Bn-Zr composite beads were prepared. The study involved continuous experimentation using a fixed bed column with varying bed heights (1.5 and 3 cm) and inlet flow rates (1 and 3 ml/min). The results showed that the breakthrough time increased with higher bed heights for both Cs-Ze-Zr and Cs-Bn-Zr composite beads. Conversely, an increase in flow rate led to a decrease in breakthrough time. Notab
... Show MoreDue to severe scouring, many bridges failed worldwide. Therefore, the safety of the existing bridge (after contrition) mainly depends on the continuous monitoring of local scour at the substructure. However, the bridge's safety before construction mainly depends on the consideration of local scour estimation at the bridge substructure. Estimating the local scour at the bridge piers is usually done using the available formulae. Almost all the formulae used in estimating local scour at the bridge piers were derived from laboratory data. It is essential to test the performance of proposed local scour formulae using field data. In this study, the performance of selected bridge scours estimation formulae was validated and sta
... Show MoreNanoparticles (NPs) have unique capabilities that make them an eye-opener opportunity for the upstream oil industry. Their nano-size allows them to flow within reservoir rocks without the fear of retention between micro-sized pores. Incorporating NPs with drilling and completion fluids has proved to be an effective additive that improves various properties such as mud rheology, filtration, thermal conductivity, and wellbore stability. However, the biodegradability of drilling fluid chemicals is becoming a global issue as the discharged wetted cuttings raise toxicity concerns and environmental hazards. Therefore, it is urged to utilize chemicals that tend to break down and susceptible to biodegradation. This research presents the pra
... Show More